

Series GEFH1/2

SET ~

प्रम-पत्र कोड Q.P. Code 55/2/

रोह्य उं Roll

परीक्षार्थी प्रस्त-पत्र कोड को उत्तर-पुस्तिका के मृख-पृष्ठ पर अवस्य लिखें ।

Candidates must write the Q.P. Code on the title page of the answer-book.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय : ३ पण्टे

Time allowed : 3 hours

अधिकतम् अकः 70

Maximum Marks : 70

नोट / NOTE :

कृपवा जीव कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 23 है । (i) Please check that this question paper contains 23 printed pages

प्रश्न-पत्र में टाहिने हाथ की ओर दिए गए प्रक्न-पत्र कोड़ को परीक्षार्थी उत्तर-पश्लिका के मुख-पुष्ठ पर लिखें। (ii) Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

(iii) कृपना जाँच कर लें कि इस प्रश्न-पत्र में 35 प्रश्न हैं।

Please check that this question paper contains 35 questions

(iv) कृत्या प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-प्रतिका में प्रश्न का क्रमांक अवश्य लिखें। Please write down the serial number of the question in the answerbook before attempting it.

इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वांड में 10 15 क्जे किया जाएगा । 10,15 क्जे से 10 30 क्जे तक परीक्षार्थी केवल प्रश्न-पत्र को पर्देगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10 15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer. on the answer-book during this period

55/2/2 241 B

Page 1 of 24

P.T.O.

मामाञ विदेश

जिञ्जितिकत निर्देशों को बहुत मास्थानी से पहिए और उनका पालन कीजिए :

- (1) इस एक्ट एवं में 35 एक्ट हैं । सभी एक्ट अनिवार्थ हैं ।
- (11) प्रश्न पत्र **पाँच ल**ण्डों में विभाजित हैं लण्ड-क, **ल**, ग, य तथा ङ ।
- (१११) खण्ड क में प्रश्न सख्या । से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
- (11) खण्ड ख में प्रश्न संख्या 19 से 25 तक लघु उत्तरीय प्रकार-1 के दो–दो अंकों के प्रश्न हैं ।
- (c) **खण्ड ग** में प्रश्न संख्या 26 से 30 तक लघु उत्तरीय प्रकार-2 के तीन-त**ीन अं**कों के प्रश्न हैं।
- (11) खण्ड घ में प्रश्न संख्या 31 से 33 तक दीर्घ उत्तरीय प्रकार के पाँच-पाँच अंकों के प्रश्न हैं।
- (t.u) **खण्ड इ** में प्रश्न संख्या 34 तथा 35 केस आधारित **चार-चार** अंकों के प्रश्न हैं।
- (tun) प्रश्न-एत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड-ख के 2 प्रश्नों में, खण्ड-ग के 2 प्रश्नों में, खण्ड-घ के 3 प्रश्नों में तथा खण्ड-ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग वर्जित है।

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} J_8$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

इलेक्ट्रॉन का द्रव्यमान (${
m m_e}$) = $9.1 imes 10^{-31} {
m \, kg}$

न्युट्रॉन का द्रष्यमान =
$$1.675 \times 10^{-27} \text{ kg}$$

प्रोटॉन का द्रव्यमान =
$$1.673 \times 10^{-27} \text{ kg}$$

बोल्ट्ज्रमान नियतांक =
$$1.38 \times 10^{-23} \, \mathrm{JK^{-1}}$$

55/2/2

Page 2 of 24

General Instructions:

Read the following instructions very carefully and follow them:

- (i) This question paper contains 35 questions. All questions are compulsory
- (ii) Question paper is divided into FIVE sections Section A, B, C, D and E.
- (iii) In Section A: Question number 1 to 18 are Multiple Choice (MCQ) type questions carrying 1 mark each.
- (iv) In Section B: Question number 19 to 25 are Short Answer-1 (SA-1) type questions carrying 2 marks each.
- (v) In Section C: Question number 26 to 30 are Short Answer-2 (SA-2) type questions carrying 3 marks each.
- (vi) In Section D: Question number 31 to 33 are Long Answer (LA) type questions carrying 5 marks each.
- (vii) In Section E: Question number 34 and 35 are Case-Based questions carrying 4 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section-B, 2 questions in Section-C, 3 questions in Section-D and 2 questions in Section-E.
- (ix) Use of calculators is NOT allowed.

$$c = 3 \times 10^{8} \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

Mass of electron (m_e) = 9.1×10^{-31} kg

Mass of neutron = 1.675×10^{-27} kg

Mass of proton = 1.673×10^{-27} kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant = $1.38 \times 10^{-23} \, \text{JK}^{-1}$

[-_-]

Page 3 of 24

P.T.O.

खराई - क

1	Files	^{री सम्ततः} विद्युतंबुम्बकीय तरंग के विद्युत है	ोत्र और '	बुम्बकीय क्षेत्र के परिमाणा का अनुपात होता है -
		t	(b)	
	(c)	c	(d)	$\frac{1}{c^2}$
2	हाड्डा	ड्रोजन परमाणु के बोर मॉडल में इलेक्ट्रॉन ब	ना बहसं	क्रमण जिसमें उच्चतम तरंगदैर्घ्य की स्पेक्ट्रमी रेखा
		होती है, कौन सा है ? n = 3 से n = 1	A.	- ^ - - a
		$n = 4 \Re n = 1$		n = 3 से n = 2 n = 4 से n = 2
3.	बायु	में संचरण करती एकवर्णी प्रकाश की कोई	किरण ज	ल के पृष्ठ पर आपतन कर रही है । निम्नलिखित में
	(1 4)	न परावातत आर अपवातत किरणों के लिए	ए समान	होगा ?
	(a)	वहन की गयी ऊर्जा	(b)	चाल
	(c)	आवृत्ति	(d)	तरंगदैर्घ्य
4.	किसी	p-n संधि डायोड में हासी क्षेत्र निर्मित हो	ने का का	रण है
	(a)	मादक परमाणुओं की गति		इलेक्ट्रॉनॉ और विवरों दोनों का विसरण
	(c)	केवल इलेक्ट्रॉनों का अपवाह		केवल विवरों का अपवाह
5.	कोई	बिलगित बिन्दु आवेश अपने से 3 m दूरी	के किस	ी बिन्दु पर कोई विद्युत क्षेत्र $\overrightarrow{\mathbf{E}}$ उत्पन्न करता है ।
	उस वि	न् दु की इसी आवेश से दूरी क्या होगी जिस	पर विद्य	त क्षेत्र $\overrightarrow{\overline{E}}$ है ?
	(a)	2 m	(b)	3 m
	(c)	4 m	(d)	6 m
6.	बंधन :	ऊर्जा प्रति न्युक्लिऑन को ट्रह्मपार संहार		
	लिए त	ीक्ष्ण शिखर है । इससे यह ध्वनित होता है	काफल किझीन	ान मानकर खींचे गए वक्र पर हीलियम नाभिक के
	(a)	रेडियोएक्टिव है।	· ·· enc	वित्र गामक
		अस्थायी है।		
	(c)	सरलता से विखण्डनीय है ।		
	(d)	अपने निकट के नाभिक से अधिक स्थायी	.	
55/2/	/2		ह। age 4	of 24

https://www.cbseboardonline.com

SECTION - A

55/2	/2	F	Page 5	of 24 P.T.	0
	(d)	more stable nucleus than its	neigh	abours	
	(c)	easily fissionable			
	(b)	unstable			
	(a)	radioactive			1
	nucl	eus is	enum	nucleus. This implies that neuum	
U.	num	curve or binding energy pe iber has a sharp neak for be	r nucl	eon as a function of atomic mass nucleus. This implies that helium	
6.	ሞኤ	aumo of hinding			
	(c)	4 m	√(d)	6 m	
	(a)	2 m	(b)	3 m	
	3 m	away from it. The distance of	the p	oint at which the field is $\frac{\vec{E}}{4}$ will be	1
5.				luces an electric field \vec{E} at a point	
	(c)	drift of electrons only	(d)	drift of holes only	
	(a)	movement of dopant atoms	(b).	diffusion of both electrons and holes	
4.		formation of depletion region			1
	(c)	Frequency	(d)	Wavelength	
	(a)	Energy carried	(p)	Speed	
	refr	acted rays?		be the same for the reflected and	1
3.	Ara	ay of monochromatic light pro	pagati	ng in air, is incident on the surface	
	(c)	n = 4 to $n = 1$	(d)	n = 4 to n = 2	
	(a)	•	(p)	_	
		velength.			1
				rise to the spectral line of highest	
2	Spe	ecify the transition of electron	in the	wavelength of the line in the Bohr	
	(c)	c	(d)	$\overline{\mathbf{c}^{i}}$	
	(a)		<i>c</i> 15	1	
	(a)	1	(b)	1	
	pla	ne electromagnetic wave is	the ele	sctric field and magnetic field of a	1

Pika	சிரைப்ப டலி	काली भारत प्रशा	बेल हो रही है	। 10 s में इस तार की किसी अनुप्रस्थ-काट।	À
प्रका	कित होने बाले इलेक्टॉ	त्याचा चारा जन्म ते क्री धरावा है -			ı
	*	₹\$ ** 5\$ \$10 \$ *** ₹ 5	(b)	5.0×10^{11}	
			(d)	1.0×10^{17}	
नीचे	दिए गए तत्त्वों में से	किससे एक इत	नेक्ट्रॉन को ब	हर निकालने के लिए सबसे अधिक ऊर्जा र	
34}0					1
		Si			
	_		(b)	C	
(C)	Sı		(d)	Pb	
10	Ω का एक चालक 6	\ [*] के आदर्श स्रोत	त से संयोजित	है । स्रोत से चालक को आपूर्तित शक्ति है –	1
(a)	1.8 W				
(c)	3.6 W		(d)	7.2 W	
किसं	ी अपद्रव्यी अर्धचालव	ह में विवरों का र	संख्या धनत्व	$4 imes 10^{20}~\mathrm{m}^{-3}$ है । यदि नैज वाहकों का संर	9 या
					1
(c)	$3.6 \times 10^9 \text{ m}^{-3}$				
किर्स	ो बाह्य प्रतिरोध R के	Bari a) om c	· == == ++	و منام المعالم	
सेल	के इलेक्ट्रोडों के बीच	त्यस्य सं साता है. विभवान्तर घटक	। काकाइसः स्टिडो जात	ा संयाजित है। जब सल संयारा 1 ला जाता है । है। ग्रेल का भाजितक प्रतिकेश के है) (I) 1
	/ -				1
	· • ,		(b)	$\left(\frac{E-V}{R}\right)$	
(c)	$\frac{(E-V) R}{I}$		(d)	$\left(\frac{\mathbf{E} - \mathbf{V}}{\mathbf{V}}\right) \mathbf{R}$	
किसी	धातु के पृष्ठ पर 663	3 nm तरंगदैर्घ्य	का कोई फो	टॉन आपतन कर रहा है । इस धात का कार्यप	हलन
1.50) eV है । उत्सर्जित प	ो टो इ लेक्ट्रॉनों व	ति अधिक तम	गतिज ऊर्जा है	1
(a)	$3.0 \times 10^{-20} \text{J}$				
(b)	$6.0 \times 10^{-20} \text{J}$				
(c)	$4.5 \times 10^{-20} \mathrm{J}$				
(d)	$9.0 \times 10^{-20} \mathrm{J}$				
2/2	1	_ i	Page (of 24	
	http	s://www.c	cbseboa	rdonline.com	
	प्रका (a) (c) की अर (a) (c) (b) (d) (c) (d) (e) (fath (a) (c) (fath (a) (c) (fath (a) (c) (d) (d)	प्रकाहित होने वाले इलेक्ट्रॉन् (a) 40 × 10 ¹⁶ (b) 16 × 10 ¹⁶ नीचे दिए गए तत्त्वों में से आवश्यकता होगी ? Pb. Ge. C और (a) Ge (c) Si 10 Ω का एक चालक 6 ° (a) 1.8 W (c) 3.6 W किसी अपद्रव्यी अर्घचालव घनत्व 1.2 × 10 ¹⁵ m ⁻¹ (a) 1.8 × 10 ⁹ m ⁻³ (c) 3.6 × 10 ⁹ m ⁻³ किसी बाह्य प्रतिरोध R के सेल के इलेक्ट्रोडों के बीच ° (a) (E - V) R (b) (c) (E - V) R (c) (E - V) R (d) 3.0 × 10 ⁻²⁰ J (e) 4.5 × 10 ⁻²⁰ J (f) 9.0 × 10 ⁻²⁰ J (g) 9.0 × 10 ⁻²⁰ J	प्रचाहित होने वाले इलेक्ट्रॉनो की सख्या है - (a) 40 × 10 ¹⁶ (b) 16 × 10 ¹⁶ नीचे दिए गए तत्त्वों में से किससे एक इले आवश्यकता होगी ? Pb. Ge. C और Si (a) Ge (b) Si 10 Ω का एक चालक 6 V के आदर्श सोव (a) 1.8 W (c) 3.6 W किसी अपद्रव्यी अर्घचालक में विवरों का स्वान्त्व 1.2 × 10 ¹⁵ m ⁻³ है, तो इसमें इले (a) 1.8 × 10 ⁹ m ⁻³ (c) 3.6 × 10 ⁹ m ⁻³ किसी बाह्य प्रतिरोध R के सिरों से emf E सेल के इलेक्ट्रोडों के बीच विभवान्तर घटक (a) (E - V) R (c) (E - V) R किसी धातु के पृष्ठ पर 663 nm तरंगदैध्यं 1.50 eV है । उत्सर्जित फोटो इलेक्ट्रॉनों व (a) 3.0 × 10 ⁻²⁰ J (b) 6.0 × 10 ⁻²⁰ J (c) 4.5 × 10 ⁻²⁰ J (d) 9.0 × 10 ⁻²⁰ J (d) 9.0 × 10 ⁻²⁰ J	प्रचाहित होने वाले इलेक्ट्रांनी की सख्या है — (a) 4.0×10^{16} (b) (c) 1.6×10^{16} (d) नीचे दिए गए तत्त्वों में से किससे एक इलेक्ट्रांन को बा आवश्यकता होगी ? Pb. Ge. C और Si (a) Ge (b) (c) Si (d) 10 Ω का एक चालक 6 V के आदर्श स्रोत से संयोजित (a) 1.8 W (b) (c) 3.6 W (d) किसी अपद्रव्यी अर्घचालक में विवरों का संख्या घनत्व स्थानत्व $1.2 \times 10^{15} \text{ m}^{-3}$ है, तो इसमें इलेक्ट्रांनों का संख्या घनत्व $1.8 \times 10^9 \text{ m}^{-3}$ (b) (c) $3.6 \times 10^9 \text{ m}^{-3}$ (d) किसी बाह्य प्रतिरोध R के सिरों से emf E का कोई सेल सेल के इलेक्ट्रोंडों के बीच विभवान्तर घटकर V हो जाता (a) $\left(\frac{E-V}{E}\right)R$ (b) (c) $\frac{(E-V)R}{I}$ (d) किसी धातु के पृष्ठ पर 663 nm तरंगदैर्घ्य का कोई फोर 1.50 eV है । उत्सर्जित फोटो इलेक्ट्रॉनों की अधिकतम (a) $3.0 \times 10^{-20} \text{ J}$ (b) $6.0 \times 10^{-20} \text{ J}$ (c) $4.5 \times 10^{-20} \text{ J}$ (d) $9.0 \times 10^{-20} \text{ J}$ (e) $9.0 \times 10^{-20} \text{ J}$	(a) 4.0×10^{15} (b) 5.0×10^{17} (c) 1.6×10^{15} (d) 1.0×10^{17} (e) 1.6×10^{15} (f) 1.0×10^{17} (d) 1.0×10^{17} (e) 1.6×10^{15} (f) 1.0×10^{17} (e) 1.6×10^{15} (f) 1.0×10^{17} (f) 1.0×10^{17} (g) 1.0×10^{15} (h) 1.0×10^{17} (f) 1.0×10^{17} (h)

tu I				a wire. The number of	idectrous
		ang through a cros	s-section of the wi		,
	(4)	4.0 × 10 ¹⁶	(b)	5.0 × 10 ⁽¹⁾	
	(4.)	1 6 × 10 ¹⁶	(d)	1.0 × 1011	
8	take	out an electron fr		vill require the highest	energy to 1
		Ge, C and Sı	(h)	C	
	(a) (c)	Ge St	(b) (d)	Pb	
9.	Ae		to the conductor (b)	oss a 6 V ideal source. T is 2.4 W 7.2 W	The power 1
10.	if the	he number density sity of electrons in 1.8 × 10 ⁹ m ⁻³	y of intrinsic car i it is (b)	sher density of holes is 4 riers is 1.2×10^{15} m ⁻³ , t 2.4×10^{10} m ⁻³ 3.2×10^{10} m ⁻³	
11.	T' i	s drawn from the cell drops to V. Tl	cell, the potentia he internal resista (b)	external resistance R. W. Il difference across the example $\frac{E-V}{R}$ $\left(\frac{E-V}{V}\right)R$	
12.	fun	oction of the metalitted photo electrons $3.0 \times 10^{-20} \mathrm{J}$ $6.0 \times 10^{-20} \mathrm{J}$ $4.5 \times 10^{-20} \mathrm{J}$	al is 1.50 eV. T	cident on a metal surfa he maximum kinetic e	
55/		1	Page	e 7 of 24	Р.Т.О.

13.	इलेक्ट्रॉनों और प्रोटॉनों के पुंज समान दिशा में एक दूसरे के समान्तर गतिमान हैं। इन दोनों के बीच (a) आकर्षण बल होगा ।	
	(a) आकर्षण बल होगा।	1
	(b) प्रतिकर्षण बल होगा ।	
((c) न तो आकर्षण बल होगा और न ही प्रतिकर्षण बल होगा । (d) आकर्षण अधवा प्रविकर्णण कर है ।	
	(d) आकर्षण अथवा प्रतिकर्षण बल पुंजों की चाल पर निर्भर करता है।	
14. (600 nm तरंगदैर्घ्य की कोई प्रकाश की किरण वायु से किसी माध्यम में संचरण कर रही है। यदि इस नाध्यम में तरंगदैर्घ्य 400 nm हो जाती है, तो माध्यम का अपवर्तनांक है –	
(a) 1.4	I
	b) 1.5	
	c) 1.6 d) 1.8	
,	d) 1.8	
10. p	त्रेज्या 'a' के किसी सीधे लम्बे तार से कोई स्थायी धारा 'I' प्रवाहित हो रही है । इसकी अनुप्रस्थ-काट के जिफल पर धारा एकसमान वितरित है । दूरी $\frac{a}{2}$ पर चुम्बकीय क्षेत्र \overrightarrow{B}_1 और दूरी $2a$ पर चुम्बकीय क्षेत्र \overrightarrow{B}_2	
	$\frac{1}{2}$	1
	(b) 1	
(c) 2 (d) 4	
नोट : प्रश कि	न संख्या 16 से 18 में कथन दिए गए है – एक को अभिकथन (A) तथा दूसरे को कारण (R) लेवल या गया है। इन प्रश्नों के सही उत्तरों का कोड (a), (b), (c) और (d) में से इस प्रकार चयन कीजिए :	
(a)) अभिकथन (A) और कारण (R) दोनों सत्य हैं और कारण (R), अभिकथन (A) की सही व्याख्या है।	
(b)	अभिकथन (A) और कारण (R) दोनों सत्य हैं और कारण (R). अभिकथन (A) की सही व्याख्या $-$ हीं है ।	
(c)	अभिकथन (A) सत्य है और कारण (R) असत्य है।	
(d)	अभिकथन (A) असत्य है और कारण (R) भी असत्य है।	
55/2/2	Page 8 of 24	

- Beams of electrons and protons move parallel to each other in the same direction They (11) attract each other **(b)** repel each other (c) neither attract nor repel (d) force of attraction or repulsion depends upon speed of beams 14. A ray of light of wavelength 600 nm propagates from air into a medium. If its wavelength in the medium becomes 400 nm, the refractive index of the 1 medium is (b) 1.4 (a) (d) 1.8 (c) 1.6 A long straight wire of radius 'a' carries a steady current T. The current is uniformly distributed across its area of cross-section. The ratio of magnitude of magnetic field \vec{B}_1 at $\frac{a}{2}$ and \vec{B}_2 at distance 2a is 1 (b) 1 (a) (d) 4 2 (c) Note: In question number 16 to 18 two statements are given - one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a). (b). (c) and (d) a- given below: Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). Both Assertion (A) and Reason (R) are true and Reason (R) is NOT (b) the correct explanation of Assertion (A).
 - Assertion (A) is true and Reason (R) is false. (c)
 - Assertion (A) is false and Reason (R) is also false.

16. 34	
16. अधिकथन (A) : किसी विद्युत क्षेत्र में किसी बन्द पथ के चारों ओर किसी आवेश को गमन कराने में किया गया कार्य शून्य होता है ।	
कारण (R) : स्थिरविद्युत बल संरक्षी बल होता है।	1
17. अभिकथन (A) : यंग के दिक्किरी प्रयोग में सभी फ्रिन्जों की चौड़ाई समान होती है।	
कारण (R) : फ्रिंज चौड़ाई उपयोग किए गए प्रकाश की तरंगदैर्घ्य (λ), पर्दे की झिरियों के तल से दूरी (D) और झिरियों के पृथकन (d) पर निर्भर करती है।	1
18. अधिकथन (A): प्रतिचुम्बकीय पदार्थ चुम्बकत्व दर्शाते हैं।	
कारण (R) : प्रतिचुम्बकीय पदार्थों में स्थायी चुम्बकीय द्विध्रुव आधूर्ण नहीं होता है ।	1
্ৰত্য – স্কু	
19. बंग के द्विझिरी प्रयोग में दो झिरियों का पृथकन d तथा झिरियों से पर्दे के बीच की दूरी 1000 d है। यदि केन्द्रीय उच्चिष्ठ से प्रथम निम्निष्ठ की दूरी d है, तो d और λ के बीच संबंध प्राप्त कीजिए।	0
20. T > 0 K के लिए किसी n-प्रकार और p-प्रकार के अर्धचालकों के लिए ऊर्जा बैण्ड आरेख खींचिए।	2
21. निम्नलिखित का कारण देते हुए उत्तर दीजिए :	
 (i) किसी प्रबल धारा द्वारा कोई p-n संि डायोड क्षतिग्रस्त हो जाता है। (ii) नैज अर्धचालकों में अशुद्धियों को मिलाया जाता है। 	2
22. (a) अवरक्त तरंगें किस प्रकार उत्पन्न होती हैं ? इन तरंगों को ऊष्मीय तरंगें क्यों कहा जाता है ? अवरक तरंगों के कोई दो उपयोग लिखिए।	
(b) X-किरणें किस एकर रूप रे	2
अपयोग लिखिए।	
23. संक्षेप में व्याख्या कीजिए कि किसी गैल्वैनोमीटर को अमीटर में क्यों और किस प्रकार परिवर्तित किया	
55/2/2 Page 10 of 24	2

16. Assertion (A): Work done in moving a charge around a closed path, in an electric field is always zero. 1 Reason (R): Electrostatic force is a conservative force. 17. Assertion (A): In Young's double slit experiment all fringes are of equal width. **Reason** (R): The fringe width depends upon wavelength of light (λ) used, distance of screen from plane of slits (D) and slits separation (d). 1 18. Assertion (A): Diamagnetic substances exhibit magnetism. Reason (R): Diamagnetic materials do not have permanent magnetic 1 dipole moment. **SECTION - B** 19. In a Young's double slit experiment, the separation between the two slits is d and distance of the screen from the slits is 1000 d. If the first minima falls at a distance d from the central maximum, obtain the relation 2 between d and \(\lambda\). https://www.cbseboardonline.com 20. Draw energy band diagram for an n-type and p-type semiconductor at 2 T > 0 K. 2 21. Answer the following giving reasons: A p-n junction diode is damaged by a strong current. (i) Impurities are added in intrinsic semiconductors. (ii) (a) How are infrared waves produced? Why are these waves referred to 22. as heat waves? Give any two uses of infrared waves. 2 OR How are X-rays produced? Give any two uses of these. (b) Briefly explain why and how a galvanometer is converted into an ammeter.

24. (a) आयनन ऊर्जा से क्या तात्पर्य है ? हाइड्रोजन परमाणु के लिए इसका मान लिखें।

2

अथवा

- (b) द्रव्यमान क्षति की परिभाषा लिखिए। नाभिक के स्थायित्व से यह किस प्रकार संबंधित है ?
- 25. कोई बिन्दुिकत बिम्ब वायु में 1.5 अपवर्तनांक के िकसी अवतल गोलीय पृष्ठ के सामने 60 cm की दूरी पर समितत: स्थित है। यदि इस पृष्ठ की वक्रता त्रिज्या 20 cm है, तो बनने वाले प्रतिबिम्ब की स्थिति ज्ञात कीजिए।

2

खण्ड – ग

- 26. किसी श्रेणी RL परिपथ, जिसमें R = 10 Ω तथा L = $\left(\frac{100}{\pi}\right)$ mH है, ac स्रोत वोल्टता V = 141 $\sin{(100~\pi~t)}$ से संयोजित है, यहाँ V बोल्ट में तथा t सेकण्डों में है । परिकलित कीजिए
 - (a) परिपथ की प्रतिबाधा
 - (b) कला कोण, और
 - (c) प्रेरक के सिरों पर विभव पात

3

27. कोई प्रकाश किरण अपवर्तनांक μ तथा अपवर्तन कोण A के किसी काँच के प्रिज्म पर आपतन करती है । यदि यह किरण दूसरे पृष्ठ पर ठीक-ठीक पूर्ण आन्तरिक परावर्तन करती है तो आपतन कोण, प्रिज्म कोण तथा क्रांतिक कोण के बीच संबन्ध प्राप्त कीजिए ।

3

- 28. (a) (i) प्रत्येक का एक-एक उदाहरण देकर नाभिकीय विखण्डन और नाभिकीय संलयन के बीच विभेदन कीजिए।
 - बंधन ऊर्जा प्रति न्यूक्लियॉन वक्र के आधार पर नाभिकीय विखण्डन और नाभिकीय संलयन में ऊर्जा मुक्त होने की व्याख्या कीजिए।

3

अथवा

- (b) (i) प्रयोग द्वारा नाभिक का साइज किस प्रकार ज्ञात किया जाता है ? किसी नाभिक की त्रिज्या और उसकी द्रव्यमान संख्या के बीच संबंध लिखिए ।
 - (ii) सिद्ध कीजिए कि किसी नाभिक का घनत्व उसकी द्रव्यमान संख्या पर निर्भर नहीं करता है ।

55/2/2 Page 12 of 24

24. (a) What is meant by ionisation energy? Write its value for hydrogen atom?

2

OR

- (b) Define the term, mass defect. How is it related to stability of the nucleus?
- 25. A point object in air is placed symmetrically at a distance of 60 cm in front of a concave spherical surface of refractive index 1.5. If the radius of curvature of the surface is 20 cm, find the position of the image formed.

2

SECTION - C

26. A series RL circuit with R = 10 Ω and L = $\left(\frac{100}{\pi}\right)$ mH is connected to an acsource of voltage V = 141 sin (100 π t), where V is in volta and t is in seconds. Calculate

3

- (a) impedence of the circuit
- (b) phase angle, and
- (c) voltage drop across the inductor

[-_-[

27. A ray of light is incident on a glass prism of refractive index μ and refracting angle A. If it just suffers total internal reflection at the other face, obtain a relation between the angle of incidence, angle of prism and critical angle.

3

- 28. (a) (i) Distinguish between nuclear fission and fusion giving an example of each.
 - (ii) Explain the release of energy in nuclear fission and fusion on the basis of binding energy per nucleon curve.

3

OR

- (b) (i) How is the size of a nucleus found experimentally? Write the relation between the radius and mass number of a nucleus.
 - (ii) Prove that the density of a nucleus is independent of its mass number.

 $P.T.\ell$

1,100.0

3

5

- 29 दो सेलों को जिनके emf E_i और E_j तथा आन्तरिक प्रतिरोध क्रमश: r_i और r_j हैं, पार्श्व में एक दूसरे के समान धुर्बों से संबोजित किया गया है। इस संयोजन के तुल्य emf के लिए व्यंजक प्राप्त कीजिए।
- 30 (a) दो आबेशित चालक गोले जिनकी त्रिज्या a और b हैं किसी तार द्वारा एक दूसरे से संयोजित हैं । इनके पृष्ठों पर विद्युत क्षेत्रों का अनुपात ज्ञात कीजिए ।

अथवा

- (b) धारिता C के किसी समान्तर पट्टिका संधारित्र (A) को किसी बैटरी द्वारा वोल्टता V तक आवेशित किया गया है। इस संधारित्र से बैटरी को असंबद्ध करके 2C धारिता के किसी अनावेशित संधारित्र (B) को संधारित्र के सिरों से संबद्ध कर दिया गया है। ज्ञात कीजिए:
 - (i) A और B पर अंतिम आवेशों का अनुपात
 - (ii) अन्तिमत: A और B में संचित कुल स्थिरविद्यत ऊर्जा और आरम्भ में A में संचित ऊर्जा का अनुपात

खण्ड – घ

- 31. (a) (i) हाइगेन्स-सिद्धान्त लिखिए । आरेख की सहायता से यह दर्शाइए कि कोई समतल तरंग किसी पृष्ठ से कैसे परावर्तित होती है । इसका उपयोग करके परावर्तन के नियम का सत्यापन कीजिए ।
 - (ii) 12 cm फोकस दूरी का कोई अवतल दर्पण किसी बिम्ब का तीन गुना आवर्धित आभासी प्रतिबिम्ब बनाता है। दर्पण से बिम्ब की दूरी ज्ञात कीजिए।

अथवा

- (b) (i) अपवर्ती दूरदर्शक द्वारा प्रतिबिम्ब बनना दर्शाने के लिए नामांकित किरण आरेख खींचिए । इसकी आवर्धन क्षमता की परिभाषा लिखिए । परावर्ती दूरदर्शक की तुलना में अपवर्ती दूरदर्शक की दो सीमाएँ लिखिए ।
 - (ii) किसी संयुक्त सूक्ष्मदर्शी के अभिदृश्यक और नेत्रिका लेंसों की फोकस दूरियां क्रमश: 1.0 cm और 2.5 cm हैं । 300 आवर्धन प्राप्त करने के लिए इस सूक्ष्मदर्शी की नलिका की लम्बाई ज्ञात कीजिए ।

- Two cells of emf E; and E; and internal resistances r, and r; are connected in parallel, with their terminals of the same polarity connected together. Obtain an expression for the equivalent emf of the combination.
- 30 (a) Two charged conducting spheres of radii a and b are connected to each other by a wire. Find the ratio of the electric fields at their surfaces.

OR

- (b) A parallel plate capacitor (A) of capacitance C is charged by a battery to voltage V. The battery is disconnected and an uncharged capacitor (B) of capacitance 2C is connected across A. Find the ratio of
 - (i) final charges on A and B.
 - (ii) total electrostatic energy stored in A and B finally and that stored in A initially.

SECTION - D

- 31. (a) (i) State Huygen's principle. With the help of a diagram, show how a plane wave is reflected from a surface. Hence verify the law of reflection.
 - (ii) A concave mirror of focal length 12 cm forms a three times magnified virtual image of an object. Find the distance of the object from the mirror.

OR

- (b) (i) Draw a labelled ray diagram showing the image formation by a refracting telescope. Define its magnifying power. Write two limitations of a refracting telescope over a reflecting telescope.
 - (ii) The focal lengths of the objective and the eye-piece of a compound microscope are 1.0 cm and 2.5 cm respectively. Find the tube length of the microscope for obtaining a magnification of 300.

Page 15 of 24

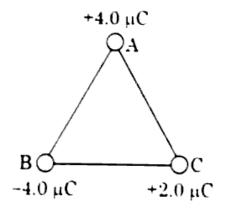
P.T.O.

3

3

5

- 32. (a) (i) गाउस नियम का उपयोग करके एकसमान रैखिक आवेश घनत्व λ के किसी अनन्तत: लम्बे सीघे पतले तार के कारण विद्युत क्षेत्र के लिए कोई व्यंजक प्राप्त कीजिए ।
 - (ii) किसी अनन्तत: लम्बे धनावेशित सीधे तार का रैखिक आवेश धनत्व λ है । कोई इलेक्ट्रॉन इस तार को केन्द्र मानकर, वृत्ताकार पथ पर इस तार की परिक्रमा, तार के लम्बवत तल में किसी नियत चाल ν से कर रहा है । आवेश के परिमाण और तार पर रैखिक आवेश धनत्व λ के पदों में इलेक्ट्रॉन की गतिज ऊर्जा ज्ञात कीजिए ।
 - (iii) रैखिक आवेश धनत्व λ को फलन मानकर गतिज ऊर्जा के लिए ग्राफ खींचिए I


अथवा

- (b) (i) दो सर्वसम बिन्दु आबेशों पर विचार कीजिए जो बिन्दुओं (0, 0) और (a, 0) पर स्थित हैं ।
 - (1) क्या इन दोनों को जोड़ने वाली रेखा पर ऐसा कोई बिन्दु है जिस पर विद्युत क्षेत्र शून्य हैं ?
 - (2) क्या इन दोनों को जोड़ने वाली रेखा पर ऐसा कोई बिन्दु है जिस पर विद्युत विभव शून्य है ?

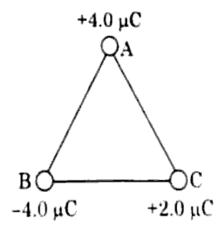
प्रत्येक प्रकरण के उत्तर की पृष्टि कीजिए।

 (ii) आवेशों के निकाय की स्थिरविद्युत स्थितिज ऊर्जा के ऋणात्मक मान के महत्व का उल्लेख कीजिए ।

आरेख में दर्शाए अनुसार तीन आवेश 2.0 m भुजा के किसी समबाहु त्रिभुज ABC के शीचों पर स्थित हैं। इन तीनों आवेशों के निकाय की वैद्युत स्थितिज ऊर्जा परिकलित कीजिए।

Page 16 of 24

- 32 (a) (i) Use Gauss' law to obtain an expression for the electric field due to an infinitely long thin straight wire with uniform linear charge density λ
 - (ii) An infinitely long positively charged straight wire has a linear charge density λ. An electron is revolving in a circle with a constant speed ν such that the wire passes through the centre, and is perpendicular to the plane, of the circle. Find the kinetic energy of the electron in terms of magnitudes of its charge and linear charge density λ on the wire.
 - (iii) Draw a graph of kinetic energy as a function of linear charge density λ .


OR

- (b) (i) Consider two identical point charges located at points (0, 0) and (a, 0).
 - (1) Is there a point on the line joining them at which the electric field is zero? https://www.cbseboardonline.com
 - (2) Is there a point on the line joining them at which the electric potential is zero?

Justify your answers for each case.

(ii) State the significance of negative value of electrostatic potential energy of a system of charges.

Three charges are placed at the corners of an equilateral triangle ABC of side 2.0 m as shown in figure. Calculate the electric potential energy of the system of three charges.

Page 17 of 24

P.T.O.

5

- 33. (a) (i) स्व-प्रेरण गुणांक की परिभाषा लिखिए । N फेरों वाली लम्बाई / तथा अनुप्रस्थ-काट क्षेत्रफल A की किसी परिनालिका के स्व-प्रेरकत्व के लिए व्यंजक प्राप्त कीजिए ।
 - (ii) नीचे दिए गए आँकड़ों का उपयोग करके किसी कुण्डली का स्व-प्रेरकत्व परिकलित कीजिए । इन आँकड़ों को कुण्डली के सिरों पर $\left(\frac{200}{\pi}\right)$ Hz आवृत्ति के AC स्रोत और DC स्रोत को अनुप्रयुक्त करके प्राप्त किया गया है ।

AC स्रोत			DC स्रोत		
क्रम संख्या	V (बोल्ट)	I (एम्पियर)	क्रम संख्या	V (बोल्ट)	। (एम्पियर)
1	3.0	0.5	1	4.0	1.0
2	6.0	1.0	2	6.0	1.5
3	9.0	1.5	3	8.0	2.0

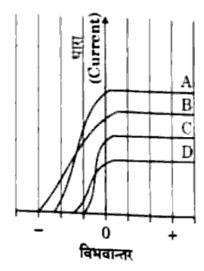
अथवा

- (b) (i) नामांकित आरेख की सहायता से किसी ac जिनत्र के सिद्धान्त और कार्यविधि का वर्णन कीजिए । इसका उपयोग करके उत्पन्न emf के तात्क्षणिक मान के लिए व्यंजक व्युत्पन्न कीजिए ।
 - (ii) किसी ac जिनत्र की कुण्डली में तार के 100 फेरे हैं जिनमें प्रत्येक का क्षेत्रफल 0.5 m² है। तार का प्रतिरोध 100 Ω है। यह कुण्डली अपने घूर्णन अक्ष के लम्बवत 0.8 T के चुम्बकीय क्षेत्र में 60 रेडियन प्रति सेकण्ड की नियत कोणीय चाल से घूर्णन कर रही है। इस कुण्डली में जिनत अधिकतम emf और शक्ति क्षय परिकलित कीजिए।

- (a) (i) Define coefficient of self-induction Obtain an expression for self-inductance of a long solenoid of length t, area of cross-section A having N turns
 - Calculate the self-inductance of a coil using the following data obtained when an AC source of frequency $\left(\frac{200}{\pi}\right)$ Hz and a DC source is applied across the coil.

AC Source				
S.No.	V (Volts)	I (A)		
1	3.0	0.5		
2	6.0	1.0		
3	9.0	1.5		

DC Source				
S.No.	V (Volts)	I (A)		
1	4.0	1.0		
2	6.0	1.5		
3	8.0	2.0		


OR

- (b) (i) With the help of a labelled diagram, describe the principle and working of an ac generator. Hence, obtain an expression for the instantaneous value of the emf generated.
 - (ii) The coil of an ac generator consists of 100 turns of wire, each of area 0.5 m². The resistance of the wire is 100 Ω. The coil is rotating in a magnetic field of 0.8 T perpendicular to its axis of rotation, at a constant angular speed of 60 radian per second. Calculate the maximum emf generated and power dissipated in the coil.

साम्ब – इ

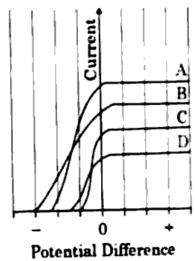
नोट : प्रश्न संख्या 34 और 35 केस आधारित प्रश्न हैं । नीचे दिए गए अनुच्छेद का अध्ययन करके प्रश्नों के उत्तर दीजिए ।

34 (a) दिए गए आरेख में किसी प्रकाश विद्युत सेल परिपध में उसकी पट्टिकाओं के बीच विभवान्तर की फलन मानकर मापी गयी प्रकाश विद्युत धारा के विचरण को दर्शाया गया है जबकि सेल पर विभिन्न तरंगदैध्यों के प्रकाश पुंज A. B. C और D आपतन करते हैं। दिए गए आरेख का परीक्षण कीजिए और निम्न प्रश्नों के उत्तर दीजिए।

- (i) किस प्रकाश पुंज की आवृत्ति उच्चतम है और क्यों ?
- (ii) किस प्रकाश पुंज की तरंगदैर्घ्य अधिकतम है और क्यों ?
- (iii) किस प्रकाश पुंज द्वारा सबसे अधिक संवेग से प्रकाशनज इलेक्ट्रॉन उत्सर्जित होते हैं और क्यों ?

4

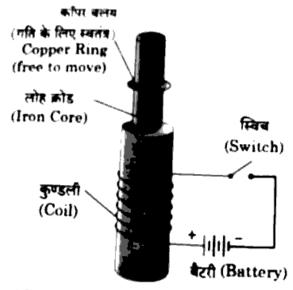
अथवा


(b) आपितत प्रकाश पुंज की आवृत्ति में वृद्धि करने पर देहली आवृत्ति और निरोधी विभव पर क्या प्रभाव होता है ? अपने उत्तर की पृष्टि कीजिए ।

SECTION - E

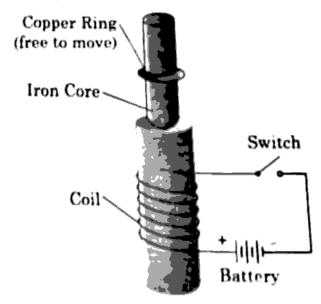
Note: Questions number 34 and 35 are case study based questions. Read the following paragraph and answer the questions.

34. (a) Figure shows the variation of photoelectric current measured in a photo cell circuit as a function of the potential difference between the plates of the photo cell when light beams A, B, C and D of different wavelengths are incident on the photo cell. Examine the given figure and answer the following questions:


- (i) Which light beam has the highest frequency and why?
- (ii) Which light beam has the longest wavelength and why?
- (iii) Which light beam ejects photoelectrons with maximum momentum and why?

OR

(b) What is the effect on threshold frequency and stopping potential on increasing the frequency of incident beam of light? Justify your answer.


35 (a) आरेख में दर्शांची प्राचोगिक व्यवस्था पर विचार कीजिए । यह झंपन-वलय (Jumping Ring) प्रचोग भौतिकी के कुछ निवर्मों का उत्कृष्ट निदर्शन है । इसमें किसी अचुम्बकीय चालक पदार्थ के बलब को किसी परिनालिका के ऊर्घ्वांघर क्रोड पर रखा जाता है । जब परिनालिका से घारा प्रचाहित की जाती है, तो बलय ऊपर की ओर उछलता है ।

निम्न प्रश्नों के उत्तर दीजिए :

- जब परिपथ में स्विच को बन्द करते हैं तो वलय के झंपन के कारण की व्याख्या कीजिए ।
- यदि बैटरी के टर्मिनलों को उत्क्रमित कर दें और फिर स्विच को बन्द करें तो क्या होगा ?
 व्याख्या कीजिए।
- (iii) इस परिघटना को समझने में सहायता करने वाले दो नियमों की व्याख्या कीजिए । अथवा
- (b) किसी दी गई परिनालिका के चुम्बकीय क्षेत्र की प्रबलता में वृद्धि करने के विभिन्न उपायों की संक्षेप में व्याख्या कीजिए।

(a) Consider the experimental set up shown in the figure. This jumping ring experiment is an outstanding demonstration of some simple laws of Physics. A conducting non-magnetic ring is placed over the vertical core of a solenoid. When current is passed through the solenoid, the ring is thrown off.

Answer the following questions:

- (i) Explain the reason of jumping of the ring when the switch is closed in the circuit.
- (ii) What will happen if the terminals of the battery are reversed and the switch is closed? Explain.
- (iii) Explain the two laws that help us understand this phenomenon.

OR

(b) Briefly explain various ways to increase the strength of magnetic field produced by a given solenoid.

https://www.cbseboardonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स क्षेत्रे और 10 रुपये पार्ये,

Paytm or Google Pay सं