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General Instructions :   

 (i) All questions are compulsory.  

 (ii) This question paper contains 29 questions.  

 (iii) Questions No. 1-4 in Section A are very short-answer type 
questions carrying 1 mark each. 

 (iv) Questions No. 5-12 in Section B are short-answer type 
questions carrying 2 marks each. 

 (v) Questions No. 13-23 in Section C are long-answer – I type 
questions carrying 4 marks each. 

 (vi) Questions No. 24-29 in Section D are long-answer – II type 
questions carrying 6 marks each. 
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 –   

SECTION – A 

 

   1  4    1     

 Question numbers 1 to 4 carry 1 mark each. 

 

1.  A = 3 B   A  B  3    ,  | B | = 2 ,  

| A |     

 If A = 3B, where A and B are square matrices of order 3 and | B |  

= 2, then find | A |. 

 

2.    : 
.

.

sin–1 x
1 – x2 dx. 

  Find : 
.

.

sin–1 x
1 – x2 dx. 

 

3.  tan x  sec x       

 Write the derivative of tan x with respect to sec x. 

 

4.   â  ^b      | â – ^b | = 1 ,  â  ^b    

     

 If â and ^b are two unit vectors and | â – ^b | = 1, then find the acute 

angle between â and ^b. 
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 –   

SECTION – B 

 

   5  12     2    

 Question numbers 5 to 12 carry 2 marks each. 

 

5.    : cot –1 (–x) = – cot –1 x, x  . 

 Prove that : cot –1 (–x) = – cot –1 x, x  . 

 

6.   sin 








sin–1 
2
7 + cos–1 2x  = 1 ,  x       

 If sin 








sin–1 
2
7 + cos–1 2x  = 1, then find the value of x. 

 

7.   X    Y = 






 3   2 

 1   4   2X + 3Y = 






  7     4 

 –1   10     

 Find the matrix X if Y = 






 3   2 

 1   4  and 2X + 3Y = 






  7     4 

 –1   10  

 

8.   f(x) = x3 – 5x2 – 3x     [1, 3]     

   

  Verify Mean value theorem, for the function f(x) = x3 – 5x2 – 3x in 

the interval [1, 3]. 
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9.   ,  6y = x3 + 2              

  x-    y –  2         

 A particle moves along the curve 6y = x3 + 2. Find the points on the 

curve at which the y – co-ordinate is changing 2 times as fast as the     

x – co-ordinate. 

 

10.    : 
.

. x
x

x
d 

)a(sin

a)  ( sin




. 

 Find : 
.

. x
x

x
d 

)a(sin

a)  ( sin




 

 

11.         a  = î  – ĵ  + 3k̂  b  = 2 î  – 7 ĵ  

+ k̂               

         

 The adjacent sides of a parallelogram are determined by the 

vectors a  = î  – ĵ  + 3k̂ and 

b  = 2 î  – 7 ĵ  + k̂. Find the vectors 

determining its diagonals and hence find the area of the 

parallelogram.   

 

12.                    

     

 A die is tossed thrice. Find the probability of getting an odd 

number at least once. 
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 –   

SECTION – C 
  

   13  23     4    

 Question numbers 13 to 23 carry 4 marks each. 
 

 

13.          : 

  






    xy      xz   x2 + 1 

 y2 + 1   yz      xy 
    yz   z2 + 1   xz 

= 1 + x2 + y2 + z2 

  

  A = 






 3   2   0 

 1   4   0 
 0   0   5 

 ,    A2 – 7A + 10 I3 = O  A–1  

   

 Using properties of determinants, prove that  : 

  






    xy      xz   x2 + 1 

 y2 + 1   yz      xy 
    yz   z2 + 1   xz 

= 1 + x2 + y2 + z2 

OR 

 If A = 






 3   2   0 

 1   4   0 
 0   0   5 

, show that A2 – 7A + 10 I3 = O, hence find A–1. 
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14.    f (x) = 




 
(3sin x –1)2

x log (1 + 5x)  ,  x  0

          k           ,  x = 0
   

 x = 0   ,  k       

  

  y = 
1 – x
1 + x  ,     (1 – x2) 

dy
dx + y = 0. 

 If the function f (x) = 




 
(3sin x –1)2

x log (1 + 5x)  ,  x  0

          k           ,  x = 0
   

 is continuous at x = 0, find k. 

OR 

 If y = 
1 – x
1 + x , prove that (1 – x2) 

dy
dx + y = 0 

 

15.   (sin x)y = x + y ,       

 
dy
dx = 

1 – (x + y) y cot x
(x + y) log sin x – 1   

  If (sin x)y = x + y, then show that   

 
dy
dx = 

1 – (x + y) y cot x
(x + y) log sin x – 1   
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16.    : 


       

   

    
.
.                                    

x2 + x
x3 – x2 + x – 1

 dx 

     

   : 


.

.e
2x.cos (3x + 1) dx  

 Find : 


       

   

    
.
.                                    

x2 + x
x3 – x2 + x – 1

 dx 

   OR 

 Find : 


.

.e
2x.cos (3x + 1) dx  

17.    :  

2
π

0

2

d
 cossin 

sin
x

xx

x
 

 Evaluate :  

2
π

0

2

d
 cossin 

sin
x

xx

x
 

 

18.           

 dy
dx – 3 cot  x . y = sin 2x;    y = 2   x = 


2    

  Find the particular solution of the differential equation 

 
dy
dx – 3 cot  x . y = sin 2x ; given that y = 2 when x = 


2 
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19.               

 x –            

  Form the differential equation representing the family of ellipses 

having foci on x – axis and centre at origin. 

 

20.     A(3, 2, 1), B(4, x, 5), C(4, 2, –2)  D(6, 5, –1)  

,  x       

 If the four points A(3, 2, 1), B(4, x, 5), C(4, 2, –2) and                    

D(6, 5, –1) are coplanar, then find the value of x. 

 

21.   ,     ,         

  :  

 r  = ( î  + 2 ĵ  + 3k̂) +  ( î  – 3 ĵ  + 2k̂)  

 r  = (4 î  + 5 ĵ  + 6k̂) +  (2 î  + 3 ĵ  + k̂). 

 Find the shortest distance between the lines whose vector 

equations are given below :  

 r  = ( î  + 2 ĵ  + 3k̂) +  ( î  – 3 ĵ  + 2k̂) and 

 r  = (4 î  + 5 ĵ  + 6k̂) +  (2 î  + 3 ĵ  + k̂). 
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22.        A  4   4   ,  B  3   5 

    C  5   3           

          ,     

         B        

 From three bags, bag A contains 4 red and 4 black balls, bag B 

contains 3 red and 5 black balls and bag C contains 5 red and 3 

black balls. A bag out of the three is selected at random and a ball 

is drawn from it randomly. If the drawn ball is found to be red, 

find the probability that it was drawn from bag B. 

 

23.    52                

              

         

 From a well shuffled pack of 52 playing cards, two cards are 

drawn at random without replacement. Write the probability 

distribution of number of kings. Hence find the mean of the 

distribution.   
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 –   

SECTION – D 
 

   24  29     6    
 Question numbers 24 to 29 carry 6 marks each. 
 

24.    f : [–1, 1] → , f(x) = 
x

x + 2 ,           

f : [–1, 1] → (f  ),        f–1






–1

3  

 f–1






1

5      

                                 

       

 a * b = 
(a + b)

2  ,  a, b  R  

 (i)       

 (ii)       

      *       

 Show that f : [–1, 1] →  given by f(x) = 
x

x + 2  is one – one. Find 

the inverse of the function f : [–1, 1] → (Range of f) and hence 

find f–1






–1

3  and f–1






1

5 . 

                   OR 
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 Find whether the binary operation : 

 a * b = 
(a + b)

2  ,  a, b  R is 

 (i) Commutative 

 (ii) Associative 

 Hence, find if the operation * has identity or not.  

 

25.              : 

 x – y + 2z = 7 ; 3x + 4y – 5z = – 5 ; 2x – y + 3z = 12.  

  Solve the following system of equations using matrix method : 

 x – y + 2z = 7 ; 3x + 4y – 5z = – 5 ; 2x – y + 3z = 12.  

 

26.   y2 = 4x                         

(0, 3)       

  

  28                  

                

       ?  
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 Find the equation of the normal to the curve y2 = 4x, which passes 

through the point (0, 3). 

OR 

 A wire of length 28 cm is cut into two pieces. One made into a 

square and the other into a circle. Find the lengths of the two 

pieces so that the combined area of square and the circle is 

minimum. 

 

27.          y2 = 9x,  x = 2, x = 4  x –  

         

  

                

 




   2

    
.
. (2x2 + 3x + 1) dx.  

 Using integration, find the area of the region bounded by y2 = 9x,  

x = 2, x = 4 and the x – axis in the first quadrant.  

OR 

 By the method of limit of sum, find the value of the following 

definite integral.  

 




   2

    
.
. (2x2 + 3x + 1) dx.  
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28.   (–1, –5, –10)   r  = 2 î  – ĵ  + 2k̂ +  (3 î  + 4 ĵ  + 2k̂)  

 r  . ( î  – ĵ  + k̂) = 5            

 Find the distance of the point (–1, –5, –10) from the point of 

intersection of the line r  = 2 î  – ĵ  + 2k̂ +  (3 î  + 4 ĵ  + 2k̂) and the 

plane r  . ( î  – ĵ  + k̂) = 5 

 

29.        X  Y        

   A     10 ,  B     12 

   C     8    1 ..    

      :   

  A  B  C 

X 1 2 3 

Y 2 2 1 

  X  1    ` 16   Y  1    ` 20 ,   

 (i)              

   (L.P.P.)     

 (ii)            ?   
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 A dietician wishes to mix two kinds of food X and Y in such a way 

that the mixture contains at least 10 units of Vitamin A, 12 units of 

vitamin B and 8 units of vitamin C. The vitamin contents of one kg 

food is given below :   

Food Vitamin A Vitamin B Vitamin C 

X 1 2 3 

Y 2 2 1 

 One kg of food X costs ` 16 and one kg of food Y costs ` 20. Then  

 (i) for finding the least cost of the mixture which will produce the 

required diet, write an L.P.P. 

 (ii) What is the importance of balanced diet in a person’s life ?   

__________ 
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