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General Instructions :
(i)  All questions are compulsory.
(ii) Please check that this Question Paper contains 26 Questions.

(iii) Questions 1 to 6 in Section-A are Very Short Answer Type Questions carrying one
mark each.

(iv) Questions 7 to 19 in Section-B are Long Answer I Type Questions carrying 4 marks
each.

(v) Questions 20 to 26 in Section-C are Long Answer II Type Questions carrying
6 marks each

(vi) Please write down the serial number of the Question before attempting it.

us - A
SECTION - A

T T 1 ¥ 6 T ek T 1 37 T |
Question numbers 1 to 6 carry 1 mark each.

. IR, b R T AR ERF 2+ b+ =08 @ a-b+b -C+C-aH AN

fefEw |

- - -

If ?, b, C are unit vectors such that a + b + ¢ = 0, then write the value of
- -

2a-b+b-C+C-a.

2

2. w&r‘ ?x§‘2+‘ E’-ﬁ‘ =4OO%HQJT‘E>‘ =5%,Fﬁ‘§‘a€rm=r%1f@tr |

2

2
If‘ ?xg‘ +‘ Xﬁ‘ =400 and‘?‘ =5, then write the value of‘g‘.

3. 3F G 1 GHEOT fAET St get 65§ 513 i g R & e gt e ol o gw =
FIHGHE |

Write the equation of a plane which is at a distance of 5\/§ units from origin and the

normal to which is equally inclined to coordinate axes.
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-1 0 -1

1
4. 3213 -1 1 0 0 |[=AT @ 3= A H e @ |
0 1 1 -1
-1 0 -1 1
If213| -1 1 0O 0 | =A, then write the order of matrix A.
0 1 1 -1
X sin® cos 0
5. afg| —sin® —x 1 |=8% dlx o 9+ fefam |
cos 0 1 X
X sin® cos 0
If| —sin® —x 1 = &, write the value of x.
cos 0 1 X
35 : .
6. ATA= 7 9 HA=P+ Q% &Y H forar S & STl P U THMHAT Mg & T4 Q TH
fomm Tmfia sege &, a aegg P fefeEu |

5
IfA= ( 7 9 j is written as A = P + Q, where P is a symmetric matrix and Q is skew
symmetric matrix, then write the matrix P.
s -
SECTION - B

T T 7§ 19 T U U 4 3H HE |
Question numbers 7 to 19 carry 4 marks each.

2
7. tan~! (@jﬁﬁr sin! 2 & GTUeT STFhel ShiTeT, STEih x € (-1, 1)%r |

X 1 +x2
3AAT
dy d
1T x = sin t € FAT y = sin pt &, A 1G5 HieT %F(l—xz)d—xg—x(—ixx+p2y:0
1+x2-1
Differentiate tan™! (@j w.r.t. sin”! L+ 2 ifxe (-1, 1)

OR
- - 2, &%y XQX 2
Ifx:smtandy:smpt,provethat(l—x)dxz— TP y=0.
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8. @l y2 = 4ax AU x2 = 4by & I HT AT HIUT A HINTT |

Find the angle of intersection of the curves y* = 4ax and x? = 4by.

9. WM I HINT f

1+s1nocsmx

i

Evaluate : f
0

X
1 + sin o sin x

10. ﬁﬁﬂﬁﬁ@:j(2x+5) 10 — 4x — 3x2 dx
AT

(P +D 2+
TEH: | 23 o2 s) &

Find:f(2x+5)\/10—4x—3x2dx

OR

. (2D 2+
Find : o2+ 3) (xz—S)dx

xsin”_'x
11. 39 S J\/—
1-x2

-
Find : jmdx

\ll—xz

12. 97 31e/hel THIHIOT i BT ShiMTT :
y2dx + (x2 — xy + y?)dy =0

Solve the following differential equation :
y2dx + (x? —xy + y)dy = 0

13. 991 eTereper HIHIOT T A DT
(cotly +x) dy = (1 + y?) dx

Solve the following differential equation :
(cotly +x) dy = (1 + y?) dx
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14, T TXb=CXxd A axCT=bxds aauEeira—d,b—C%aaas Sohad
%
c

, show that a— 3 is parallel to g - E), where a # 3

[
ol
X

el

15. fog =iftste i fogett A0, -1, —1) @& B(4, 5, 1) T 1o ST aTett @ fag3ti C(3, 9, 4) @
D(—4, 4, 4) ¥ Bl STH oITeAl 1T ol UfeTese shiel ¢ |

Prove that the line through A(O, —1, —1) and B(4, 5, 1) intersects the line through
C(@3,9,4) and D(-4, 4, 4).

16. Th e § 20 99 & 190 ¥ 2 @O € | A5 SRR UTGATOAT & 9@ 5 U7 Fehret S, ot
TTEehdT I SHifsTT fob 2ARIehad 2 O &0 & |

YT

HET foh X, ioist i G Ghad sl § STl T 37T 3101 IR0 319 o a1 STas Hil 31K
P (X = x) Wbl Grad S & STaich ST x hictsT T ToT el gebaT & | o T & o

kx , Agx=03T1

2kx , A x=2
PX=9=9 y5_p . aftx=3a4"

0 , dAcx>4
e k U g1ce 3T ¢ |

Kk T 919 T BT | Tg WiGehdr o A1 BT o6 IR (i) Teh 37T Shelel Tk hictst | Ja9T
e (i) 21fes @ 21faeh 31 hictstt § WA fHONT (jil) 9 W 7 31 ikl § Yor9T fHerm |

A box has 20 pens of which 2 are defective. Calculate the probability that out of
5 pens drawn one by one with replacement, at most 2 are defective.

OR

Let, X denote the number of colleges where you will apply after your results and
P (X = x) denotes your probability of getting admission in x number of colleges. It is

given that
kx , ifx=0orl
2 kx , ifx=2

PX =)= k5_x , ifx=3o0rd
0 , ifx>4

where k is a positive constant. Find the value of k. Also find the probability that you
will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2
colleges.
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17. fag =it &

\/1+sinx+\/1—sinx X

T
COt_l\/1+sinx—\/1—sinx:§’ <*<2
YT
x % ToTT & T
tan~! (ﬂ)+tan‘1 (x+2):§
x-1 x+1) 4
Prove that :
Cot_l\/l+s%nx+\/1—s‘inx:§’0<x<§
\/1+smx—\/1—smx 2 2
OR
Solve for x :

¢ _l(x;)+t —1(x+2)_ﬂ
MW -y k)74

18. 3TUST T UgH dTetl SHiteT T&T S 9 [ 317 11 § e ofdl © 99 3R o TR aedi &
T %I ST & | 99 1 | 20 e 997 5 3R S ¢ 31X Pl Wiigs Fud AR
9,000 ¢, STafeh =1 11§ 5 TR 3R 25 SR §d € 3 Fol g = 07 T 26,000 € |
e Taf9 & THT Wb o Udish = g1 &1 T8 AN HIE 1 HIT | TFT ek hireiT
e FES U o] Yo T @ E

A coaching institute of English (subject) conducts classes in two batches I and II and
fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich
children and total monthly collection is ¥ 9,000, whereas in batch II, it has 5 poor and
25 rich children and total monthly collection is ¥ 26,000. Using matrix method, find
monthly fees paid by each child of two types. What values the coaching institute is
inculcating in the society ?

2
x*+3x+a, x<1
19. aﬁwf(x):{bx_'_z o1

x =1 FTHAIEG g, dl a TT b % T A BT |

Find the values of a and b, if the function f defined by

£ )_{ x*+3x+a, x<1
V= bx+2  , x>1
is differentiable at x = 1.
65/2/3/F 6



20.

21.

22.

gue -
SECTION - C

U9 HE&AT 20 T 26 T Uceh U9 6 AH H |
Question numbers 20 to 26 carry 6 marks each.
3T THAA T FHHIT AT DT ST TAAA x + 2y + 32 -4 =0TM 2 +y—z+5=03H
Uiceal Y@M & SFafase Sl & a7 N9 §RT x-37T W I 147 3q.Ts, z-30T W HIE T
ATTES HFATE |
31 39 FHA B WEY FHEHUT feAf@u S 5 (2, 3, —1) ¥ &I ST & el SWie ured
HHAA & FHIR € |

Find the equation of the plane which contains the line of intersection of the planes
x+2y+3z-4=0and 2x + y — z + 5 = 0 and whose x-intercept is twice its
z-intercept.

Hence write the vector equation of a plane passing through the point (2, 3, —1) and
parallel to the plane obtained above.

THIA AT AT TATS HleAl o &, TAH A B H 4 AT AN 4 HeAl T8 | I AT H 2
T 9t B ¥ ATl SHRANT i TE 921 {5 9t B & ¥ Ueh 715 ATgesaT Fehredl 78 21 ol
T7 ! G TS | Wikl T i {6 A § B H TAMIARA i TE A1 Ts oAl 7 61 & |

Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls.
Two balls are transferred at random from bag A to bag B and then a ball is drawn from
bag B at random. If the ball drawn from bag B is found to be red, find the probability
that two red balls were transferred from A to B.

310 37k HafeTd TR ol e 1 & feld U = X 3R Y et o = € 1 X 31X
Y TR i Uh-Ueh el B AR, Shiceram o faetfem 6 arm (e &) e <t g e

et

e

[a)
h[CITIH

faetm

X

6

3

2

2

3

Y 4
e ol H 9 HH 18 ey e, 21 foeium $feermm ik 16 foetum faefmm &t 2w
HEATTHAT & | X Y 1 1 Tl ol Hiad shAe: T 2 AT 1 & | UdS oAl ot foht
AT AT I - AET o S 3 TS SAwaehdl 5 ¥ HY DHiAd § [ & ST | T @
TIUTHT AT SR W GRT & HiSTT |

In order to supplement daily diet, a person wishes to take X and Y tablets. The
contents (in milligrams per tablet) of iron, calcium and vitamins in X and Y are given
as below :

Tablets

Iron

Calcium

Vitamin

X

6

3

2

Y

2

3

4

65/2/3/F 7

The person needs to supplement at least 18 milligrams of iron, 21 milligrams of
calcium and 16 milligrams of vitamins. The price of each tablet of X and Y is ¥ 2 and
% 1 respectively. How many tablets of each type should the person take in order to satisfy
the above requirement at the minimum cost ? Make an LPP and solve graphically.
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23. HATTHf, g : R — R T %ol 59 UHR RTINS &

f(x)z|x|+x3ﬁTg(x)=|x|—x,Vxe R
fogmgofﬁﬁeaﬁq |
3d: fog (=3), fog(5) 3R gof (—2) T BT |

If f, g : R = R be two functions defined as f(x) = | x| + x and g(x) = | x |- x, Vx e R.
Then find fog and gof. Hence find fog(-3), fog(5) and gof (-2).

24. a5 a, b3 c Tl IARE,
l+a 1 1 L

1
3R 1 1+b 1 |=o0®&d i:l@éﬁr\U-IQ%b‘g+E+g+1:0%l
1 1 1+c

rerat
cosot —sina 0

T A=| sino cosa O |& dladj. A FHINIT T G DI 6
0 0 1

A(adjA) = (adjA)A = | A ] T,

If a, b and c are all non-zero and 1 1+b 1 =, then prove that i +% +% +1=0
1 1 l+c
OR
cosaa —sino O
IfA=| sinot coso O | find adj-A and verify that A(adj-A) = (adj-A)A = | A| L.
0 0 1

25. e T TR S, 2 TS E, T O Y 35 G gt A S ¥ | o it

o6 3o STaeHT ST AT AR B AT x, el T BISAT 1 A AT € | S TR o AT
AT T o 1 BN |

YT
TFH y = cos(x + y), 21 < x < 20 T H 3T T WRGIS & FHHIT A BT S 3@n
x+2y:0éo‘ﬂ'q1?lT% |
The sum of the surface areas of a cuboid with sides x, 2x and%and a sphere is given to

be constant. Prove that the sum of their volumes is minimum, if x is equal to three

times the radius of sphere. Also find the minimum value of the sum of their volumes.
OR

Find the equation of tangents to the curve y = cos(x +y), —27 < x < 27 that are parallel

to the line x + 2y = 0.

26. FHERAA! % WA F al y =4 — x2 T A2 + y2 — dx = 0 T x-3& Y oY & 1 Qe
T HIT |
Using integration find the area of the region bounded by the curves y = \/4 — x2,
x% + y? — 4x = 0 and the x-axis.
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