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General Instructions :
(i)  All questions are compulsory.
(ii) Please check that this Question Paper contains 26 Questions.

(iii) Questions 1 to 6 in Section-A are Very Short Answer Type Questions carrying one
mark each.

(iv) Questions 7 to 19 in Section-B are Long Answer I Type Questions carrying 4 marks
each.

(v) Questions 20 to 26 in Section-C are Long Answer II Type Questions carrying
6 marks each

(vi) Please write down the serial number of the Question before attempting it.
ug — A
SECTION - A

T T 1 ¥ 6 T ek T 1 37 T |
Question numbers 1 to 6 carry 1 mark each.

y ?J%A:(i ZjaﬁA:P+Qé€mﬁ%ﬂ§TW%ﬁﬁwaﬁﬁaﬂa{é%WQw
fomm mfha sege &, af amegg P fefeEu |

5
IfA= ( 7 9 j is written as A = P + Q, where P is a symmetric matrix and Q is skew

symmetric matrix, then write the matrix P.

2. A b AN R U AT E R T+ b+ C=08 @ a-b+b-C+C-aHAA

fefEw |

- - -

If ?, b, C are unit vectors such that a + b + ¢ = 0, then write the value of
A T

a-b+b-c+c-a.

2

3. w&r‘ ?x§‘2+‘ E’-ﬁ‘ =4OO%HQJT‘E>‘ =5%,Fﬁ‘§‘a€rm=r%1f@tr |

2

2
If‘ ?xg‘ +‘ Xﬁ‘ =400 and‘?‘ =5, then write the value of‘g‘.

4. 3T GHAA T GHEHOT fAtay St get g @ 53 i g W & e g el ol o gw =
TIHGHE |

Write the equation of a plane which is at a distance of 5\/§ units from origin and the
normal to which is equally inclined to coordinate axes.
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-1 0 -1

1
5. ak@13)| -1 1 0 0 |[=AT @ 3T A H e @ |
0 1 1 -1
-1 0 -1 1
If213| -1 1 0O 0 | =A, then write the order of matrix A.
0 1 1 -1
X sin® cos 0
6. afg| —sin® —x 1 |=8% dlx o 9 fefam |
cos 0 1 X
X sin® cos 0

If| -sin® —x 1 8, write the value of x.

cos 0 1 X

ue - d
SECTION - B
TR TS 7 19 T TAE WA 4 IHH |
Question numbers 7 to 19 carry 4 marks each.

2
x*+3x+a, x<1
7. AR f(x):{bx+2 x> 1

x =1 FTHAG &, dl a T b % T A BT |

Find the values of a and b, if the function f defined by

f()_{x2+3x+a, x<1
V= bx+2  , x>1
is differentiable at x = 1.

1+x>-1 2
8. tan’! (@jaﬂ sin”! 1+xx2é?wi7ﬁ FETHAT BT, STdfF x € (=1, 1) T |
YAt
d?y d
aﬁx:sint%?ﬂTy:sinpt%,ﬁfﬂ@ﬂﬁﬁ@%ﬁ(l—xz)d—xg—x(—ixx+p2y:0
1+x>-1
Differentiate tan™! (@j w.r.t. sin”! 5.ifxe (-1, 1)
X 1+x
OR
&y d
If x = sin t and y = sin pt, prove that (1 —x?) 2 xaxX +p?y=0.
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9. TRl y2 = dax TAT x2 = 4by & &< T UT=IR! FIVT AT HIT |

Find the angle of intersection of the curves y* = 4ax and x? = 4by.

10. 99 31 HIfT f

1+s1nocsmx

i

Evaluate : f
0

X
1 + sin o sin x

11. ﬁﬁﬂﬁﬁ@:j(2x+5) 10 — 4x — 3x2 dx
AT

(P +D %+
= I‘J(x2+3)(x2—5)dx

Find : f(2x+5) 10 — 4x — 3x2 dx
OR

. (2D 2+
Fmd’j(x2+3) (x2—5)

dx

xsin_'x
12. 9 SIS J\/—
1-x?

-
Find : jmdx

\ll—xz

13. 97 31o/hel HHIHIOT i BT ShiMTT ¢
y2dx + (x2 — xy + y?)dy =0

Solve the following differential equation :
y2dx + (x2 —xy + y?)dy =0

14. 997 27erepeT THIHIT T A DT
(cotly +x) dy = (1 + y?) dx

Solve the following differential equation :
(cotly +x) dy = (1 + y?) dx
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15, TR axb=CXd A aXC=bxds AT Ha—d.b-C FaquRE, SoFa = d
Wb CE |
If?xB):?xa)and?x?:gx3,shovvthaltE>—a>ispa11rallle:1t()g—?,whereE>;«r&a>
andgi?.

16. fag =iftste i fogeti A0, -1, —1) @M B(4, 5, 1) T &I ST aTett @ f6geti C(3, 9, 4) @
D(—4, 4, 4) ¥ I STH oITeAl 1T ol UfeTese shiell ¢ |

Prove that the line through A(O, —1, —1) and B(4, 5, 1) intersects the line through
C(@3,9,4) and D(-4, 4, 4).

17. Th e H 20 99 & 90 ¥ 2 @O« € | A5 SRR UTGRATOAT & 9@ 5 U7 Fehret S, ot
TRl T ShifSTT foh 3Afehad 2 97 @ gl |

YT

HET foh X, ot i G Ghad el § STl T 37T 3701 URoMT 31 o a1 STas Hil 3K
P (X = x) Wbl Grad S & STich ST x hictsT T ToT el GebaT & | o T & o

kx , Agx=03T1

2kx , A x=2
PX=9=9 5_p . aftx=3a4"

0 , A x>4
STafeh k U gIce 3 ¢ |

Kk T 919 T HIT | Tg WiFehdr o T HIfTT 56 IR (i) Teh 3 helel Tk hicist | Ja9l
e (i) 21fes @ 21faeh 31 icistt § AT fHONT (jil) 9 § 7 31 ikt § Jor9T fHer |

A box has 20 pens of which 2 are defective. Calculate the probability that out of
5 pens drawn one by one with replacement, at most 2 are defective.

OR

Let, X denote the number of colleges where you will apply after your results and
P (X = x) denotes your probability of getting admission in x number of colleges. It is

given that
kx , ifx=0orl
2 kx , ifx=2

PX =)= k5_x , ifx=3or4
0 , ifx>4

where k is a positive constant. Find the value of k. Also find the probability that you
will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2
colleges.
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18. Tog =wifvw &

Cot_l\/l+s%nx+\/1—s‘inx:§’0<x<§
\/1+smx—\/1—smx 2 2
YT
x % 7T & T
¢ _1(x;) t —1(x+2)_ﬂ
R ) T
Prove that :
Cot_l\/l+s%nx+\/1—s‘inx:§’0<x<§
\/1+smx—\/1—smx 2 2
OR
Solve for x :

. _l(x— )+t _1(x+2)_§
a1 1)Ta

19. TS Taw=r ugm dTetl i T&1 51 9 [ 317 11 § R ofdl © S99 3R o TR aedi &
T % ST & | 99 1 | 20 e 997 5 3R S ¢ 31X Pl Wiigsw Fud AR
9,000 ¢, STafeh =1 11 § 5 TR 3R 25 SR §d € 37 Fol g = 0T T 26,000 € |
3 Taf9 & SHT Wb o Udish e g1 &1 T8 AN HIE 1T HIT | THT ek hirenT
e TN o] g T @ E

A coaching institute of English (subject) conducts classes in two batches I and II and
fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich
children and total monthly collection is ¥ 9,000, whereas in batch II, it has 5 poor and
25 rich children and total monthly collection is ¥ 26,000. Using matrix method, find
monthly fees paid by each child of two types. What values the coaching institute is
inculcating in the society ?

g -|
SECTION - C

9 T&AT 20 9§ 26 T Uh U9 6 3FH H ¢ |

Question numbers 20 to 26 carry 6 marks each.

20. TUTHGH b WA F T5hT y = \[4 — x2 T2 + y2 — 4x = O T x-37T ¥ TR &1 T &het
1A T |

Using integration find the area of the region bounded by the curves y = \/4 — x,
x% + y? — 4x = 0 and the x-axis.
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21.

22.

23.

3T GHTA T FHFIUT ST I ST FHATA x + 2y + 32 -4 =0TAAM2x+y -2+ 5=07H
U=t T@T i e R & a1 T9 gRT x-377 W Hiel T A6, 2-30T W HE T
TWE H FATE |
3T 39 FHA B WSY FHEHT feAf@u S 65 (2, 3, —1) ¥ &I ST & el SWie ured
HHAA & FHIAL T |

Find the equation of the plane which contains the line of intersection of the planes
x+2y+3z-4=0and 2x + y — z + 5 = 0 and whose x-intercept is twice its
z-intercept.

Hence write the vector equation of a plane passing through the point (2, 3, —1) and
parallel to the plane obtained above.

TH AT AT AT TATS HleAl o &, TR A B H 4 AT AN 4 HeAl T8 | I AT H 2
T 9t B ¥ ATl SHRANT i TE 921 {5 9t B & ¥ Ueh 715 ATgesaT Fehrel! 78 21 ol
[0 1 G TS | TTEehel T i {6 A § B H TMIARA i TE AT Ts ATl 7 61 & |

Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls.
Two balls are transferred at random from bag A to bag B and then a ball is drawn from
bag B at random. If the ball drawn from bag B is found to be red, find the probability
that two red balls were transferred from A to B.

310 37k HafeTd TR ol e i & el U =afad X 3R Y Mierat o = € 1 X 31X
Y TR Bl Uh-Ueh el B AR, Shieeram o faetfam 6 arm (e &) <t g e

et

-

HicaTaH

faeftim

X

6

3

2

Y

2

3

4

i Hl w9 HA 18 ety e, 21 facium $feermm ik 16 foeum faefmm &t 2w
HEATTHAT & | X XY 1 1 Tl ol Hid hAe: T 2 AT 1 & | UhS oAl ot fopt
AT AT I - e o6 X I TS SAwaehdl 9 ¥ HY DHiAd § T & T | T @
TIUTHT AT SR W GRT & HiSTT |

In order to supplement daily diet, a person wishes to take X and Y tablets. The
contents (in milligrams per tablet) of iron, calcium and vitamins in X and Y are given
as below :

Tablets

Iron

Calcium

Vitamin

X

6

3

2

Y

2

3

4

65/2/2/F 7

The person needs to supplement at least 18 milligrams of iron, 21 milligrams of
calcium and 16 milligrams of vitamins. The price of each tablet of X and Y is ¥ 2 and
% 1 respectively. How many tablets of each type should the person take in order to satisfy
the above requirement at the minimum cost ? Make an LPP and solve graphically.
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24. TR, g : R — R 3 ol 5@ WK GRIod &
f(x)z|x|+x3ﬁTg(x)=|x|—x,Vxe R

fog T gof AT ‘_ﬁﬁq |
3d: fog (=3), fog(5) 3R gof (—2) T HIWT |

If f, g : R = R be two functions defined as f(x) = | x| + x and gx) = | x |- x, Vx e R.
Then find fog and gof. Hence find fog(-3), fog(5) and gof (-2).

25. Af5a, b3 c ol IARE,
l+a 1 1 L

1
ait| 1 1+b 1 :0%,ﬂbrfﬂ@aﬁﬁqﬁﬁg+g+g+1:0%l
1 1 1+c

3AAT
cosaa —sino 0O
T A=| sina coso O |¥ @l adj. AT HISTT TAT G BT {6
0 0 1
AGadj-A) = (adjA)A = A lT,
l+a 1 1
If a, b and c are all non-zero and 1 1+b 1 =, then prove that i +% +% +1=0
1 1 1l+c
OR
cosaa —sino O
IfA=| sinot coso O | find adj-A and verify that A(adj-A) = (adj-A)A = | A | 1.
0 0 1

26. T T TR S, 2 TS E, T O T 35 G et A S ¥ | o i
o6 3o STl ST AT TR BT A x, el T BISAT 1 A AT € | S ST o AT
AT HF o 1 BN |

et
TFH y = cos(x + y), 21 < x < 20 T H 3T T WRGIS & FHHIT AT BT S 3@n
x+2y:0éo‘ﬂ'q1?lT% |

. . . X .
The sum of the surface areas of a cuboid with sides x, 2x and 3 and a sphere is given to

be constant. Prove that the sum of their volumes is minimum, if x is equal to three
times the radius of sphere. Also find the minimum value of the sum of their volumes.
OR

Find the equation of tangents to the curve y = cos(x +y), —27 < x < 27 that are parallel
to the line x + 2y = 0.
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