SET – 2

Series: ONS/2

कोड नं. Code No. 65/2/2/F

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 8 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में **26** प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 8 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

गणित

MATHEMATICS

निर्धारित समय : 3 घण्टे अधिकतम अंक : 100 Time allowed : 3 hours Maximum Marks : 100

सामान्य निर्देश :

- (i) **सभी** प्रश्नों के उत्तर लिखने हैं।
- (ii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न है ।
- (iii) खण्ड-**अ** के प्रश्न 1–6 तक अति लघु-उत्तर वाले प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक निर्धारित है ।
- (iv) खण्ड-**ब** के प्रश्न सं. 7-19 तक दीर्घ-उत्तर I प्रकार के प्रश्न हैं और प्रत्येक प्रश्न के लिए 4 अंक निर्धारित हैं।
- (v) खण्ड-**स** के प्रश्न सं. **20**–**26** तक दीर्घ-उत्तर **II** प्रकार के प्रश्न हैं और प्रत्येक प्रश्न के लिए **6** अंक निर्धारित
- (vi) उत्तर लिखना प्रारंभ करने से पहले कृपया प्रश्न का क्रमांक अवश्य लिखिए ।

General Instructions:

- (i) All questions are compulsory.
- (ii) Please check that this Question Paper contains 26 Questions.
- (iii) Questions 1 to 6 in Section-A are Very Short Answer Type Questions carrying one mark each.
- (iv) Questions 7 to 19 in Section-B are Long Answer I Type Questions carrying 4 marks each.
- (v) Questions 20 to 26 in Section-C are Long Answer II Type Questions carrying 6 marks each
- (vi) Please write down the serial number of the Question before attempting it.

खण्ड – अ SECTION – A

प्रश्न संख्या 1 से 6 तक प्रत्येक प्रश्न 1 अंक का है । Question numbers 1 to 6 carry 1 mark each.

1. यदि $A = \begin{pmatrix} 3 & 5 \\ 7 & 9 \end{pmatrix}$ को A = P + Q के रूप में लिखा जाता है जहाँ P एक समित आव्यूह है तथा Q एक विषम समित आव्यूह है, तो आव्यूह P लिखिए ।

If $A = \begin{pmatrix} 3 & 5 \\ 7 & 9 \end{pmatrix}$ is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

2. यदि \overrightarrow{a} , \overrightarrow{b} तथा \overrightarrow{c} ऐसे मात्रक सदिश हैं कि \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$ है, तो \overrightarrow{a} · \overrightarrow{b} + \overrightarrow{b} · \overrightarrow{c} + \overrightarrow{c} · \overrightarrow{a} का मान लिखिए ।

If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then write the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.

- 3. यदि $\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 + \left| \overrightarrow{a} \cdot \overrightarrow{b} \right|^2 = 400 \ \text{ह} \ \text{तथा} \left| \overrightarrow{a} \right| = 5 \ \text{ह}, \ \text{तो} \left| \overrightarrow{b} \right| \ \text{का मान लिखिए } 1$ $If \left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 + \left| \overrightarrow{a} \cdot \overrightarrow{b} \right|^2 = 400 \ \text{and} \left| \overrightarrow{a} \right| = 5, \text{ then write the value of } \left| \overrightarrow{b} \right|.$
- 4. उस समतल का समीकरण लिखिए जो मूल बिंदु से $5\sqrt{3}$ की दूरी पर है तथा जिसका अभिलंब अक्षों पर समान रूप से झुका है ।

Write the equation of a plane which is at a distance of $5\sqrt{3}$ units from origin and the normal to which is equally inclined to coordinate axes.

65/2/2/F

5. यदि
$$(2\ 1\ 3)$$
 $\begin{pmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = A$ है, तो आव्यूह A की कोटि लिखिए ।

If
$$(2\ 1\ 3)$$
 $\begin{pmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ = A, then write the order of matrix A.

6. यदि
$$\begin{vmatrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \end{vmatrix} = 8$$
 है, तो x का मान लिखिए ।

If
$$\begin{vmatrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \end{vmatrix} = 8$$
, write the value of x .

खण्ड – ब SECTION – B

प्रश्न संख्या 7 से 19 तक प्रत्येक प्रश्न 4 अंक का है। Question numbers 7 to 19 carry 4 marks each.

7. यदि फलन
$$f(x) = \begin{cases} x^2 + 3x + a, & x \le 1 \\ bx + 2, & x > 1 \end{cases}$$

 $x = 1$ पर अवकलनीय है, तो a तथा b के मान ज्ञात कीजिए

Find the values of a and b, if the function f defined by

$$f(x) = \begin{cases} x^2 + 3x + a, & x \le 1 \\ bx + 2, & x > 1 \end{cases}$$

is differentiable at x = 1.

8.
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$
 का $\sin^{-1}\frac{2x}{1+x^2}$ के सापेक्ष अवकलन कीजिए, जबिक $x \in (-1, 1)$ है । अथवा

यदि $x = \sin t$ है तथा $y = \sin pt$ है, तो सिद्ध कीजिए कि $(1 - x^2) \frac{d^2y}{dx^2} - x\frac{dy}{dx} + p^2y = 0$

Differentiate
$$\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$$
 w.r.t. $\sin^{-1} \frac{2x}{1+x^2}$, if $x \in (-1, 1)$

If $x = \sin t$ and $y = \sin pt$, prove that $(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + p^2y = 0$.

65/2/2/F 3 [P.T.O.

- 9. वक्रों $y^2 = 4ax$ तथा $x^2 = 4by$ के बीच का प्रतिच्छेदी कोण ज्ञात कीजिए । Find the angle of intersection of the curves $y^2 = 4ax$ and $x^2 = 4by$.
- 10. मान ज्ञात कीजिए : $\int_{0}^{\pi} \frac{x}{1 + \sin \alpha \sin x} dx$

Evaluate:
$$\int_{0}^{\pi} \frac{x}{1 + \sin \alpha \sin x} dx$$

11. ज्ञात कोजिए : $\int (2x + 5) \sqrt{10 - 4x - 3x^2} \, dx$

ज्ञात कीजिए :
$$\int \frac{(x^2+1)(x^2+4)}{(x^2+3)(x^2-5)} \, \mathrm{d}x$$

Find:
$$\int (2x+5) \sqrt{10-4x-3x^2} \, dx$$

Find:
$$\int \frac{(x^2+1)(x^2+4)}{(x^2+3)(x^2-5)} dx$$

12. ज्ञात कीजिए : $\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx$

Find:
$$\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx$$

13. निम्न अवकल समीकरण को हल कीजिए :

$$y^2 dx + (x^2 - xy + y^2) dy = 0$$

Solve the following differential equation :

$$y^{2}dx + (x^{2} - xy + y^{2})dy = 0$$

14. निम्न अवकल समीकरण को हल कीजिए :

$$(\cot^{-1}y + x) dy = (1 + y^2) dx$$

Solve the following differential equation:

$$(\cot^{-1}y + x) dy = (1 + y^2) dx$$

15. यदि $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ और $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ है, तो दर्शाइए कि $\overrightarrow{a} - \overrightarrow{d}$, $\overrightarrow{b} - \overrightarrow{c}$ के समांतर है, जबिक $\overrightarrow{a} \neq \overrightarrow{d}$ और $\overrightarrow{b} \neq \overrightarrow{c}$ है।

If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$, show that $\overrightarrow{a} - \overrightarrow{d}$ is parallel to $\overrightarrow{b} - \overrightarrow{c}$, where $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$.

16. सिद्ध कीजिए कि बिंदुओं A(0, -1, -1) तथा B(4, 5, 1) से होकर जाने वाली रेखा बिंदुओं C(3, 9, 4) तथा D(-4, 4, 4) से होकर जाने वाली रेखा को प्रतिच्छेद करती है ।

Prove that the line through A(0, -1, -1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(-4, 4, 4).

17. एक डिब्बे में 20 पेन है जिसमें से 2 खराब हैं । यदि उत्तरोत्तर प्रतिस्थापना के साथ 5 पेन निकाले जाएँ, तो प्रायिकता ज्ञात कीजिए कि अधिकतम 2 पेन खराब होंगें ।

अथवा

माना कि X, कॉलेजों की संख्या सूचित करता है जहाँ पर आप अपना परिणाम आने के बाद आवेदन करेंगें और P(X=x) प्रायिकता सूचित करता है जबिक आपको x कॉलेज में प्रवेश मिल सकता है । दिया गया है कि

$$P(X = x) = \begin{cases} kx & , & \text{uff } x = 0 \text{ un } 1 \\ 2 kx & , & \text{uff } x = 2 \\ k(5 - x) & , & \text{uff } x = 3 \text{ un } 4 \end{cases},$$

जबिक k एक धनात्मक अचर है ।

k का मान ज्ञात कीजिए । यह प्रायिकता भी ज्ञात कीजिए कि आपको (i) एक और केवल एक कॉलेज में प्रवेश मिलेगा (ii) अधिक से अधिक दो कॉलेजों में प्रवेश मिलेगा (iii) कम से कम दो कॉलेजों में प्रवेश मिलेगा ।

A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.

OR

Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in x number of colleges. It is given that

$$P(X = x) = \begin{cases} kx & , & \text{if } x = 0 \text{ or } 1\\ 2 kx & , & \text{if } x = 2\\ k(5 - x) & , & \text{if } x = 3 \text{ or } 4\\ 0 & , & \text{if } x > 4 \end{cases}$$

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.

18. सिद्ध कीजिए कि

$$\cot^{-1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, \ 0 < x < \frac{\pi}{2}$$

अथवा

x के लिए हल कीजिए:

$$\tan^{-1}\left(\frac{x-2}{x-1}\right) + \tan^{-1}\left(\frac{x+2}{x+1}\right) = \frac{\pi}{4}$$

Prove that:

$$\cot^{-1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, \ 0 < x < \frac{\pi}{2}$$

OR

Solve for x:

$$\tan^{-1}\left(\frac{x-2}{x-1}\right) + \tan^{-1}\left(\frac{x+2}{x+1}\right) = \frac{\pi}{4}$$

19. अंग्रेजी विषय पढ़ाने वाली कोचिंग संस्था दो बैच I और II में कक्षा लेती है जिनमें अमीर व गरीब बच्चों के लिए फीस अलग-अलग है । बैच I में 20 गरीब तथा 5 अमीर बच्चे हैं और कुल मासिक संचय राशि ₹ 9,000 है, जबिक बैच II में 5 गरीब और 25 अमीर बच्चे हैं और कुल मासिक संचय राशि ₹ 26,000 है । आव्यूह विधि से दोनों प्रकार के प्रत्येक बच्चे द्वारा दी गई मासिक फीस ज्ञात कीजिए । ऐसा करके कोचिंग संस्था समाज में क्या मृल्य रख रही है ?

A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is $\stackrel{?}{\underset{?}{?}}$ 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is $\stackrel{?}{\underset{?}{?}}$ 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?

खण्ड – स SECTION – C

प्रश्न संख्या 20 से 26 तक प्रत्येक प्रश्न 6 अंक का है ।

Question numbers 20 to 26 carry 6 marks each.

20. समाकलनों के प्रयोग से वक्रों $y = \sqrt{4 - x^2}$ तथा $x^2 + y^2 - 4x = 0$ तथा x-अक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए ।

Using integration find the area of the region bounded by the curves $y = \sqrt{4 - x^2}$, $x^2 + y^2 - 4x = 0$ and the x-axis.

65/2/2/F 6

21. उस समतल का समीकरण ज्ञात कीजिए जो समतलों x + 2y + 3z - 4 = 0 तथा 2x + y - z + 5 = 0 की प्रतिच्छेदी रेखा को अंतर्विष्ट करता है तथा जिस द्वारा x-अक्ष पर काटा गया अंतःखंड, z-अक्ष पर काटे गए अंतःखंड का दुगुना है ।

अत: उस समतल का सिदश समीकरण लिखिए जो बिंदु (2, 3, -1) से होकर जाता है तथा उपरोक्त प्राप्त समतल के समांतर है ।

Find the equation of the plane which contains the line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y - z + 5 = 0 and whose x-intercept is twice its z-intercept.

Hence write the vector equation of a plane passing through the point (2, 3, -1) and parallel to the plane obtained above.

22. एक थैले A में 3 लाल तथा 5 काली गेंदें हैं, जबिक थैले B में 4 लाल तथा 4 काली गेंदें हैं । थैले A में से 2 गेंदे थैले B में यादृच्छया स्थानान्तरित की गई तथा फिर थैले B में से एक गेंद यादृच्छया निकाली गई तथा लाल रंग की पाई गई । प्रायिकता ज्ञात कीजिए कि A से B में स्थानांतरित की गई दोनों गेंदें लाल रंग की थीं ।

Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls. Two balls are transferred at random from bag A to bag B and then a ball is drawn from bag B at random. If the ball drawn from bag B is found to be red, find the probability that two red balls were transferred from A to B.

23. अपने दैनिक संतुलित आहार को पूरक करने के लिए एक व्यक्ति X और Y गोलियाँ लेना चाहता है । X और Y प्रकार की एक-एक गोली में लोहे, कैल्शियम व विटामिन की मात्रा (मिलीग्राम में) नीचे दी गई हैं :

गोली	लोहा	कैल्शियम	विटामिन
X	6	3	2
Y	2	3	4

व्यक्ति को कम से कम 18 मिलीग्राम लोहे, 21 मिलीग्राम कैल्शियम और 16 मिलीग्राम विटामिन की और आवश्यकता है। X और Y की 1 गोली की कीमत क्रमश: ₹ 2 और ₹ 1 है। प्रत्येक गोली की कितनी संख्या व्यक्ति को लेनी चाहिए कि ऊपर दी गई आवश्यकता कम से कम कीमत में पूरी हो जाए। एक रैखिक प्रोग्रामन समस्या बनाकर ग्राफ द्वारा हल कीजिए।

In order to supplement daily diet, a person wishes to take X and Y tablets. The contents (in milligrams per tablet) of iron, calcium and vitamins in X and Y are given as below:

Tablets	Iron	Calcium	Vitamin
X	6	3	2
Y	2	3	4

The person needs to supplement at least 18 milligrams of iron, 21 milligrams of calcium and 16 milligrams of vitamins. The price of each tablet of X and Y is $\stackrel{?}{\stackrel{?}{$\sim}}$ 2 and $\stackrel{?}{\stackrel{?}{\stackrel{?}{$\sim}}}$ 1 respectively. How many tablets of each type should the person take in order to satisfy the above requirement at the minimum cost? Make an LPP and solve graphically.

24. माना कि $f, g: R \to R$ दो फलन इस प्रकार परिभाषित हैं

$$f(x) = |x| + x$$
 और $g(x) = |x| - x$, $\forall x \in R$

fog और gof ज्ञात कीजिए।

अत: $\log (-3)$, $\log (5)$ और $g \circ f (-2)$ ज्ञात कीजिए ।

If f, g: R \rightarrow R be two functions defined as f(x) = |x| + x and g(x) = |x| - x, $\forall x \in R$. Then find fog and gof. Hence find $f \circ g(-3)$, $f \circ g(5)$ and $g \circ f(-2)$.

और
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1+c \end{vmatrix} = 0$$
 है, तो सिद्ध कीजिए कि $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 = 0$ है ।

और
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = 0$$
 है, तो सिद्ध कीजिए कि $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 = 0$ है । अथवा
$$\frac{3}{a} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 है, तो adj. A ज्ञात कीजिए तथा सत्यापित कीजिए कि

 $A(adj \cdot A) = (adj \cdot A)A = |A| I_3$

If a, b and c are all non-zero and $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = 0$, then prove that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 = 0$

If
$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, find adj·A and verify that $A(\text{adj} \cdot A) = (\text{adj} \cdot A)A = A \mid A \mid A$.

26. एक घनाभ जिसकी भुजाएँ x, 2x तथा $\frac{x}{3}$ हैं, तथा एक गोले के पृष्ठीय क्षेत्रफलों का योग अचर है । सिद्ध कीजिए कि उनके आयतनों का योग न्यूनतम होगा यदि x, गोले की त्रिज्या का तीन गुना है । उनके आयतनों के योग का न्यूनतम मान भी ज्ञात कीजिए ।

वक्र $y = \cos(x + y), -2\pi \le x \le 2\pi$ है की उन सभी स्पर्शरेखाओं के समीकरण ज्ञात कीजिए जो रेखा x + 2y = 0 के समांतर हैं।

The sum of the surface areas of a cuboid with sides x, 2x and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.

OR

Find the equation of tangents to the curve $y = \cos(x + y)$, $-2\pi \le x \le 2\pi$ that are parallel to the line x + 2y = 0.

65/2/2/F