Third Unit Test in MATHEMATICS

GENERAL INSTRUCTIONS:

i) Question nos. 1 to 4 are of 1 mark each.
ii) Question nos. 5 to 9 are of 2 marks each.
iii) Question nos. 10 \& 11 are of 3 marks each.

1. Reduce the equation $x \quad \sqrt{3} y \quad-8=0$ onto normal form.
2. Find the distance of the point $(-1,1)$ from the line $12(x+6)=5(y-2)$.
3. Find the fifth term from the end in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{17}$.
4. If the co-efficients of $\left(\begin{array}{rl}r & -5)\end{array}\right)$ and $\left(\begin{array}{ll}2 r & -1) \\ \text { terms in the expansion of }(1+\mathrm{x}\end{array}\right)^{34}$ are equal, find r .
5. Find the equation of line passing through the point $(2,2)$ and cutting off intercepts on the axes whose sum is 9 .
6. If p and q are the lengths of perpendiculars from origin to the lines $x \cos \theta-y \sin \theta=k \cos 2 \theta$ and $x \sec \theta+y \operatorname{cosec} \theta=k$ respectively, prove $p^{2}+4 q^{2}=k^{2}$.
7. Find the term independent of x in the expansion of $\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}, x>0$.
8. If the angle between two lines is $\pi / 4$ and slope of one of the lines is $1 / 2$, find the slope of other line.
9. If a and b are distinct integers, using binomial theorem, prove a - isba factor of $a^{n}-{ }^{\circ} b$,
whenever n is a positive integer.
10. Find the distance of the line $4 x+7 y \quad-2=$ from the point $(-1,1)$ along the line $x+2 y-3=0$.
11. The co-efficients of $(r-1)^{\text {th }}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(1+x)^{n}$ are in the ratio 1:7:42, find n.
```
-x-x-x-x-x-x-
```

