General Instructions :

Question nos. 1 to 4 carry 1 mark each.
Question nos. 5 to 9 carry 2 marks each.
Question nos. $10 \& 11$ carry 3 marks each.

1. Find the middle term in the expansion of $\left(\frac{2}{3} x^{2}-\frac{3}{2 x}\right)^{10}$.
2. Find the value of k for which the line $\left(4-k^{2}\right) x-(k-3) y+k^{2}-7 k+6=0$ is parallel to y-axis.
3. Find the distance between the parallel lines $3 x-4 y+8=0$ and $\frac{3}{2} x-2 y+5=0$.
4. Find the new co-ordinates of the point $(3,-5)$ if the origin is shifted to the point $(-3,-2)$ by a translation of axes.
5. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4$, find the value of m.
6. Find the equation of right bisector of the line segment joining the points $(3,4)$ and $(-1,2)$.
7. Find the value of k so that the term independent of x in the expansion of $\left(\sqrt{\mathrm{x}}+\frac{\mathrm{k}}{\mathrm{x}^{2}}\right)^{10}$ is 405 .
8. $\quad P(a, b)$ is the midpoint of the line segment between the axes. Show that the equation of the line is $\frac{x}{a}+\frac{y}{b}=2$.
9. If the coefficients of $(r-5)^{\text {th }}$ and $(2 r-1)^{\text {th }}$ terms in the expansion of $(1+x)^{34}$ are equal, find r.
10. Find the distance of the line $4 x-y=0$ from the point $P(4,1)$ measured along the line making an angle of 135° with the positive x-axis.
11. The $3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ terms in the expansion of $(x+a)^{n}$ are respectively 84,280 and 560 . Find the value of n.
