First Unit Test in MATHEMATICS

Time : 1 hr .
M. Marks : 20

GENERAL INSTRUCTIONS:

1. Attempt all the questions
2. Section - A consists of 4 questions of 1 mark each.
3. Section - B consists of 5 questions of 2 marks each.
4. Section - C consists of 2 questions of 3 marks each.

SECTION - A

1. If $p(n)$ is the statement $n(n+1)(n+2)$ is divisible by 6 , then what is $P(3)$?
2. If $p(n)$ is the statement 7 divides $2^{3 n}-1$ then what is $P(n+1)$?
3. Find the solution set for $-12 x>50$, when $x \in N$.
4. Solve $\frac{5 x}{4}-\frac{3 x}{8}>\frac{39}{8}$, when $x \in R$.

SECTION - B

5. Solve the linear inequality $\frac{x+3}{x-2} \leq 2, \quad \forall x \in R$.
6. Find the solution set for the linear equation $\frac{5 x-2}{3}-\frac{7 x-3}{5}>\frac{x}{4}, \forall x \in R$.
7. Prove the following using principle of mathematical induction:

$$
\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots \ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{6 n+4} \text { is true for all natural numbers. }
$$

8. Using principle of mathematical induction prove that $41^{n}-14^{n}$ is divisible by 27 .
9. Solve the given system of linear inequations and represent the solution in number line. $\quad 5(2 x-7)-3(2 x+3) \leq 0, \quad 2 x+19 \leq 6 x+47$.

SECTION - C

10. Using principle of mathematical induction prove that:

$$
1+2+3+\ldots \ldots \ldots \ldots \ldots+n<\frac{(2 n-1)^{2}}{8} \forall n \in N .
$$

11. Solve the following system of linear inequations graphically. $X+y \leq 8, \quad x-y<0, x \geq 0, y \geq 0$.
