GENERAL INSTRUCTIONS:

1. Attempt all the questions.
2. Section- A consists of 4 questions of 1 mark each.
3. Section-B consists of 6 questions of 2 marks each.
4. Section- C consists of 2 questions of 3 marks each.

SECTION - A

1. Find the solution of: $3 x-7>5 x-1$, for real x.
2. Change into degree: $\left(\frac{1}{4}\right)^{\mathrm{C}}$.
3. Find $\cos \theta$; if $\sin \theta=\frac{-2 \sqrt{6}}{5}$ and θ in $\mathrm{III}^{\text {rd }}$ quadrant.
4. Evaluate: $\tan \left(225^{\circ}\right) \cdot \cot \left(405^{\circ}\right)+\tan \left(765^{\circ}\right) \cdot \cot \left(675^{\circ}\right)$

SECTION - B

5. In an experiment, a solution of hydrochloric acid is to be kept between 30° and 35° Celsius. What is the range of temperature in degree Fahrenheit, if $\mathrm{C}=\frac{5}{9}$ ($\mathrm{F}-32$), where C and F are the temperatures in degree and Fahrenheit respectively.
6. Solve the following system of linear in equation for real $x: \frac{5 x+8}{4-x}<2$.
7. Prove the following using mathematical induction,
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots \ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}} \quad \forall \mathrm{n} \in \mathrm{N}$
8. Prove the following using mathematical induction:

$$
(2 \mathrm{n}+7)<(\mathrm{n}+3)^{2} . \forall \mathrm{n} \in \mathrm{~N}
$$

9. The radius of a circle is 30 cm . Find the length of the arc of this circle, if the length of the chord of this arc is 30 cm .

SECTION - C

10. Prove that: $\sec \left(\frac{3 \pi}{2}-\theta\right) \sec \left(\theta-\frac{5 \pi}{2}\right)+\tan \left(\frac{5 \pi}{2}+\theta\right) \tan \left(\theta-\frac{3 \pi}{2}\right)=-1$.
11. Find the solution graphically: $x+y \leq 9, \quad y>x, \quad x \geq 0$.

$$
-x-x-x-x-x-
$$

