GENERAL INSTRUCTIONS:

1. Attempt all the questions.
2. Section - A consists of 6 questions of 1 mark each.
3. Section - B consists of 13 questions of 4 marks each.
4. Section - C consists of 7 questions of 6 marks each.

SECTION - A

1. Evaluate $\mathrm{i}^{9}+\mathrm{i}^{19}$.
2. Which term of the following sequence: $2,2 \sqrt{2}, 4$, \qquad is 128 ?
3. Find the solution set for $2 \leq 3 x-4 \leq 5, \forall x \in R$.
4. If $\frac{1}{6!}+\frac{1}{7!}=\frac{x}{8!}$, find x.
5. Evaluate: $\sin \frac{8 \pi}{3} \cos \frac{23 \pi}{6}+\sin \frac{35 \pi}{6} \cos \frac{13 \pi}{3}$.
6. If the statement $p(n)=1.3+2.3^{2}+3.3^{3} \ldots \ldots . .+n .3^{n}=\frac{3+(2 n-1) 3^{n+1}}{4}$ is true $\forall x \in N$, then find $p(3)$.

SECTION - B

7. The ratio of the sums of m and n terms of an A.P is $m^{2}: n^{2}$. Show that the ratio of $m^{\text {th }}$ and $n^{\text {th }}$ terms is $(2 m-1):(2 n-1)$.
8. Find three numbers in G.P whose sum is 21 and sum of their squares is 189 .
9. If A.M and G.M of two positive numbers a and b are 10 and 8, respectively, find the numbers.
10. Find the square root of complex number i.
11. If $(x+i y)^{3}=u+i v$, then show that $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$.
12. Solve : $\frac{2 x+1}{x-2} \geq 1$, for real values of x.
13. Prove the following by principle of mathematical induction $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots \cdot \frac{1}{2^{n}}=1-\frac{1}{2^{n}}$.
14. Using the principle of mathematical induction prove that $3^{2 n+2}-8 n-9$ is divisible by 8 .
15. Find the number of different 8 -letter words that can be formed from the letters of the word DAUGHTER so that (i) all vowels occur together. (ii) all vowels do not occur together.
16. Prove that: $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16}$.
17. Solve : $2 \cos ^{2} x+3 \sin x=0$.
18. Prove that: $\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$.
19. Prove that $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}\right)+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$.

SECTION C

20. Show that $\frac{1 \times 2^{2}+2 \times 3+\ldots \ldots \ldots+n x(n+1)^{2}}{1^{2} \times 2+2^{2} \times 3+\ldots \ldots n^{2} x(n+1)}=\frac{3 n+5}{3 n+1}$.
21. The sum of three numbers in G.P. is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.
22. Find the modulus and argument of the complex number $Z=\frac{1+i}{1-i}-\frac{1-i}{1+i}$, and hence change it to the polar form.
23. A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl? (ii) at least one boy and one girl? (iii) at least 3 girls?
24. Solve the following system of linear inequations graphically.
$4 x+3 y \leq 60, y \geq 2 x, x \geq 3, x, y \geq 0$.
25. If $\tan \frac{\theta}{2}=\sqrt{\frac{1-\mathrm{e}}{1+\mathrm{e}}} \tan \frac{\alpha}{2}$, prove that $\cos \alpha=\frac{\cos \theta-\mathrm{e}}{1-\mathrm{e} \cos \theta}$.
26. i) Prove $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)=\frac{1}{8}$.
ii) Evaluate : $\sin \left(22 \frac{1}{2}\right)^{\circ}$
